cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075565 Numbers n such that sopf(n) = sopf(n-1) + sopf(n-2), where sopf(x) = sum of the distinct prime factors of x.

Original entry on oeis.org

5, 23, 58, 901, 1552, 1921, 4195, 6280, 10858, 19649, 20385, 32017, 63657, 65704, 83272, 84120, 86242, 105571, 145238, 181845, 271329, 271742, 316711, 322954, 331977, 345186, 379660, 381431, 409916, 424504, 490256, 524477, 542566, 550272, 561661, 565217, 566560
Offset: 1

Views

Author

Joseph L. Pe, Oct 18 2002

Keywords

Examples

			The sum of the distinct prime factors of 23 is 23; the sum of the distinct prime factors of 22 = 2 * 11 is 2 + 11 = 13; the sum of the distinct prime factors of 21 = 3 * 7 is 3 + 7 = 10; Hence 23 belongs to the sequence.
		

Crossrefs

Programs

  • Magma
    [k:k in [5..560000]| &+PrimeDivisors(k-1)+ &+PrimeDivisors(k-2) eq &+PrimeDivisors(k)]; // Marius A. Burtea, Feb 12 2020
    
  • Mathematica
    p[n_] := Apply[Plus, Transpose[FactorInteger[n]][[1]]]; Select[Range[4, 10^5], p[ # - 1] + p[ # - 2] == p[ # ] &]
  • PARI
    sopf(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1]);
    isok(n) = sopf(n) == sopf(n-1) + sopf(n-2); \\ Michel Marcus, Feb 12 2020
    
  • Python
    from sympy import primefactors
    def sopf(n): return sum(primefactors(n))
    def afind(limit):
      sopfm2, sopfm1, sopf = 2, 3, 2
      for k in range(4, limit+1):
        if sopf == sopfm1 + sopfm2: print(k, end=", ")
        sopfm2, sopfm1, sopf = sopfm1, sopf, sum(primefactors(k+1))
    afind(600000) # Michael S. Branicky, May 23 2021

Extensions

Edited and extended by Ray Chandler, Feb 13 2005