cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075584 Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 4.

Original entry on oeis.org

13, 79, 419, 461, 569, 659, 857, 1019, 1049, 1091, 1229, 1289, 1301, 1319, 1427, 1481, 1721, 1931, 1949, 2129, 2141, 2339, 2549, 2789, 2969, 3119, 3299, 3329, 3359, 3389, 3539, 3821, 3929, 4001, 4019, 4091, 4157, 4217, 4229, 4241, 4259, 4421, 4649, 4787
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Comments

It seems that for n > 2, a(n) + 2 is prime. Any counterexample p must have p > 3^1000000 and p+4 prime, and {p+1, p+2, p+3} must contain a power of 2 or 3. (The case where p+1 and p+3 are 3-smooth case can be ruled out via Catalan's conjecture/Mihăilescu's theorem.) In particular known Mersenne factorizations rule out the Fermat case below 2^144115188075855872 - 3, GIMPS rules out the Mersenne case below 2^36046457 - 1, and the exponents in A014224 rule out the remaining case below 3^1000000 - 2. - Charles R Greathouse IV, Jun 01 2016

Examples

			For p = 79, the next prime number is 83. The numbers between 79 and 83 and the prime divisors are respectively  80 { 2, 5 }, 81 { 3 }, 82 { 2, 41 }. The set of prime divisors is { 2, 3, 5, 41 } and has 4 elements, so 79 is a term. - _Marius A. Burtea_, Sep 26 2019
		

Crossrefs

Programs

  • Magma
    a:=[]; for p in PrimesInInterval(2,4800) do b:={}; for s in [p..NextPrime(p)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 4 then Append(~a,p); end if; end for; a; // Marius A. Burtea, Sep 26 2019
  • Mathematica
    Select[Prime@ Range@ 650, Length@ Union@ Flatten@ Map[First /@ FactorInteger@ # &, Select[Range[#, NextPrime@ #], CompositeQ]] == 4 &] (* Michael De Vlieger, May 27 2016 *)
    Join[{13,79},Select[Prime[Range[23,650]],PrimeQ[#+2]&&PrimeNu[#+1]==4&]] (* This program assumes the correctness of the conjecture by Charles R. Greathouse, IV, in the Comments. *) (* Harvey P. Dale, Jun 07 2019 *)
  • PARI
    lista(nn)=forprime(p=2, nn, allp = []; forcomposite (c = p+1, nextprime(p+1), allp = Set(concat(allp, (factor(c)[,1])~));); if (#allp == 4, print1(p, ", "));); \\ Michel Marcus, May 28 2016
    
  • PARI
    is(n)=if(!isprime(n), return(0)); if(isprime(n+2), return(omega(n+1)==4)); if(isprime(n+4), omega(n+1)+omega(n+2)+omega(n+3)==5, 0)
    list(lim)=my(v=List(),t,p); lim\=1; for(e=4,logint(lim+2,3), p=precprime(3^e); if(isprime(p+4) && is(p), listput(v,p))); for(e=4,logint(lim+3,2), p=precprime(2^e); if(isprime(p+4) && is(p), listput(v,p))); p=2; forprime(q=3,lim+2, if(q-p==2 && omega(p+1)==4, listput(v,p)); p=q); Set(v) \\ Charles R Greathouse IV, Jun 01 2016
    

Extensions

More terms from Matthew Conroy, Apr 30 2003
Name edited by Michel Marcus, May 28 2016
Typo in name fixed by Daria Micovic, Jun 01 2016