cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A059960 Smaller term of a pair of twin primes such that prime factors of their average are only 2 and 3.

Original entry on oeis.org

5, 11, 17, 71, 107, 191, 431, 1151, 2591, 139967, 472391, 786431, 995327, 57395627, 63700991, 169869311, 4076863487, 10871635967, 2348273369087, 56358560858111, 79164837199871, 84537841287167, 150289495621631, 578415690713087, 1141260857376767
Offset: 1

Views

Author

Labos Elemer, Mar 02 2001

Keywords

Comments

Lesser of twin primes p such that p+1 = (2^u)*(3^w), u,w >= 1.
Primes p(k) such that the number of distinct prime divisors of all composite numbers between p(k) and p(k+1) is 2. - Amarnath Murthy, Sep 26 2002

Examples

			a(11)+1 = 2*2*2*3*3*3*3*3*3*3*3*3*3 = 472392.
		

Crossrefs

Programs

  • Mathematica
    nn=10^15; Sort[Reap[Do[n=2^i 3^j; If[n<=nn && PrimeQ[n-1] && PrimeQ[n+1], Sow[n-1]], {i, Log[2, nn]}, {j, Log[3, nn]}]][[2, 1]]]
    Select[Select[Partition[Prime[Range[38*10^5]],2,1],#[[2]]-#[[1]]==2&][[All,1]],FactorInteger[#+1][[All,1]]=={2,3}&] (* The program generates the first 15 terms of the sequence. *)
    seq[max_] := Select[Sort[Flatten[Table[2^i*3^j - 1, {i, 1, Floor[Log2[max]]}, {j, 1, Floor[Log[3, max/2^i]]}]]], And @@ PrimeQ[# + {0, 2}] &]; seq[2*10^15] (* Amiram Eldar, Aug 27 2024 *)

Formula

a(n) = A027856(n+1) - 1. - Amiram Eldar, Mar 17 2025

A075580 Smallest prime p(k) such that the number of distinct prime divisors of all composite numbers between p(k) and p(k+1) is n.

Original entry on oeis.org

2, 3, 5, 7, 13, 19, 31, 53, 73, 89, 359, 139, 401, 181, 113, 211, 293, 661, 863, 773, 523, 1933, 1831, 1069, 1381, 887, 1637, 1129, 1669, 1951, 4027, 3469, 4177, 6397, 2477, 2971, 5531, 1327, 4297, 4831, 5351, 5591, 9973, 11743, 13187, 8467, 27851, 18803
Offset: 0

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Comments

a(10) > a(11).

Crossrefs

Programs

  • Mathematica
    Table[i=1; While[Length[Union[Flatten[Table[First/@FactorInteger[j],{j,(x=Prime[i])+1,NextPrime[x]-1}]]]]!=n,i++]; x,{n,0,47}] (* Jayanta Basu, May 25 2013 *)

Extensions

Corrected and extended by Sam Alexander, Oct 20 2003

A075583 Primes p such that the composite numbers between p and the next prime together contain exactly three distinct prime factors.

Original entry on oeis.org

7, 29, 41, 59, 101, 137, 149, 179, 197, 227, 239, 269, 281, 311, 347, 521, 599, 617, 641, 809, 821, 827, 881, 1031, 1061, 1277, 1451, 1487, 1607, 1619, 1667, 1697, 1787, 1871, 1877, 1997, 2027, 2081, 2087, 2111, 2237, 2267, 2381, 2657, 2687, 2711, 2801, 2999
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Comments

p+2 is prime for all members p except 7. - David Wasserman, Jan 20 2005

Crossrefs

See A080899 for another version.

Programs

  • Magma
    a:=[]; for k in PrimesInInterval(2,3000) do b:={}; for s in [k..NextPrime(k)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 3 then  Append(~a,k); end if; end for; a; // Marius A. Burtea, Sep 26 2019

Extensions

More terms from David Wasserman, Jan 20 2005

A075585 Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 5.

Original entry on oeis.org

19, 23, 37, 43, 97, 127, 223, 499, 673, 1213, 2309, 2729, 6089, 6269, 7589, 8969, 9239, 9281, 10709, 11549, 11969, 12539, 13397, 14321, 15329, 16829, 17489, 18059, 19139, 19379, 19469, 19889, 20747, 21317, 21839, 22109, 22619, 23369, 23561, 24179
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Crossrefs

Programs

  • Magma
    a:=[]; for k in PrimesInInterval(2,25000) do b:={}; for s in [k..NextPrime(k)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 5 then  Append(~a,k); end if; end for; a; // Marius A. Burtea, Sep 26 2019
  • Mathematica
    dpd5Q[p_]:=Length[Union[Flatten[FactorInteger[#][[All,1]]&/@Range[ p+1,NextPrime[ p]-1]]]]==5; Select[Prime[Range[3000]],dpd5Q] (* Harvey P. Dale, Aug 11 2021 *)

Extensions

More terms from Sam Alexander, Oct 21 2003

A075586 Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 6.

Original entry on oeis.org

31, 47, 67, 103, 109, 163, 193, 277, 313, 349, 379, 397, 457, 463, 487, 877, 1087, 1093, 1279, 1303, 1567, 1873, 2269, 2347, 2473, 2797, 3697, 4447, 4789, 4999, 5077, 5413, 5503, 5923, 6007, 6217, 6469, 6997, 7603, 7639, 7723, 7933, 8779, 9277, 10159
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Comments

For very large n, the probability of a(n) not being a twin prime is extremely small, unless the twin primes conjecture is false. - Sam Alexander, Oct 20 2003

Examples

			Between 31 and the next prime 37, there are 5 composite numbers whose prime divisors are respectively for 32: {2}, 33: {3,11}, 34: {2,17}, 35: {5,7} and 36: {2,3}; hence, these distinct prime divisors are {2,3,5,7,11,17}, the number of these distinct prime divisors is 6, so 31 is a term. - _Bernard Schott_, Sep 26 2019
		

Crossrefs

Programs

  • Magma
    a:=[]; for k in PrimesInInterval(2,10000) do b:={}; for s in [k..NextPrime(k)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 6 then  Append(~a,k); end if; end for; a; // Marius A. Burtea, Sep 26 2019
  • Mathematica
    Select[Partition[Prime[Range[1250]],2,1],Length[Union[Flatten[ FactorInteger/@ Range[ #[[1]]+1,#[[2]]-1],1][[All,1]]]]==6&][[All,1]] (* Harvey P. Dale, May 25 2020 *)

Extensions

More terms from Sam Alexander, Oct 20 2003

A075587 Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 7.

Original entry on oeis.org

53, 61, 157, 229, 307, 439, 613, 757, 769, 823, 853, 859, 883, 907, 937, 967, 1009, 1297, 1423, 1429, 1447, 1483, 1489, 1549, 1597, 1663, 1693, 1993, 2083, 2137, 2203, 2239, 2389, 2437, 2659, 2689, 2707, 2749, 2833, 2857, 2953, 3019, 3037, 3163, 3187
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Crossrefs

Programs

  • Mathematica
    pd[n_]:=Transpose[FactorInteger[n]][[1]]; Transpose[Select[ Partition[ Prime[ Range[500]],2,1],Length[Union[Flatten[ pd/@Range[First[#]+1, Last[#]-1]]]] == 7&]][[1]] (* Harvey P. Dale, Jun 15 2013 *)
    Select[Prime@ Range@ 500, Length@ Union@ Flatten@ Map[First /@ FactorInteger@ # &, Select[Range[#, NextPrime@ #], CompositeQ]] == 7 &] (* Michael De Vlieger, May 27 2016 *)

Extensions

Corrected and extended by Matthew Conroy, Apr 30 2003
Name edited by Michel Marcus, May 28 2016

A075588 Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 8.

Original entry on oeis.org

73, 83, 131, 167, 173, 251, 331, 383, 443, 563, 643, 739, 971, 1123, 1223, 1367, 1579, 1609, 1783, 1867, 1999, 2293, 2539, 2617, 2683, 3083, 3217, 3253, 3343, 3457, 3847, 4003, 4513, 4783, 4813, 4969, 5167, 5233, 5527, 5737, 5779, 5839, 5857, 6199, 6733
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Examples

			For p = 131, the next prime number is 137. The numbers between 131 and 137 and the prime factors are respectively 132 { 2, 3, 11 }, 133 { 7, 19 }, 134 { 2, 67 }, 135 { 3, 5 }, 136 { 2, 17 }. The set of prime divisors is { 2, 3, 5, 7, 11, 17, 19, 67 } and has 8 elements, so 131 is a term. - _Marius A. Burtea_, Sep 26 2019
		

Crossrefs

Programs

  • Magma
    a:=[]; for p in PrimesInInterval(2,7000) do b:={}; for s in [p..NextPrime(p)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 8 then Append(~a,p); end if; end for; a; // Marius A. Burtea, Sep 26 2019
  • Mathematica
    Select[Partition[Prime[Range[1000]],2,1],Length[Union[ Flatten[ FactorInteger[ Range[ #[[1]]+1,#[[2]]-1]],1][[All,1]]]]==8&][[All,1]] (* Harvey P. Dale, Dec 26 2019 *)

Extensions

More terms from Matthew Conroy, Apr 30 2003

A075589 Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 9.

Original entry on oeis.org

89, 151, 233, 257, 263, 271, 353, 367, 373, 503, 541, 571, 587, 601, 647, 653, 727, 733, 751, 977, 991, 1013, 1181, 1291, 1321, 1433, 1453, 1621, 1753, 1861, 2281, 2371, 2377, 2671, 3061, 3079, 3203, 3323, 3793, 4051, 4073, 4283, 4357, 4519, 4591, 4639
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Examples

			For p = 233, the next prime number is 239. The numbers between 233 and 237 and the prime divisors are respectively 234 {2, 3, 13}, 235 {5, 47}, 236 {2, 59}, 237 {3, 79 }, 238 {2, 7, 17}. The set of prime divisors is {2, 3, 5, 7, 13, 17, 47, 59, 79} and has 9 elements, so 233 is a term.
		

Crossrefs

Programs

  • Magma
    a:=[]; for p in PrimesInInterval(2,5000) do b:={}; for s in [p..NextPrime(p)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 9 then Append(~a,p); end if; end for; a; // Marius A. Burtea, Sep 26 2019

Extensions

More terms from Matthew Conroy, Apr 30 2003

A332740 Prime numbers p such that the set of composite numbers in the range [p+1, nextprime(p)-1] has more than one element and all the elements have the same number of divisors.

Original entry on oeis.org

229, 8293, 9829, 14887, 16087, 20389, 21493, 44983, 50581, 53887, 57943, 63463, 64663, 72223, 81547, 93253, 108343, 134917, 138727, 143239, 157207, 192613, 199669, 203653, 206407, 210853, 218839, 244837, 248749, 251287, 255049, 262693, 280183, 296437, 300319
Offset: 1

Views

Author

Amiram Eldar, Feb 21 2020

Keywords

Comments

The corresponding numbers of divisors are 8, 16, 8, 8, 8, 8, 8, 8, 8, 16, 8, 8, 16, 24, 24, ... and the number of divisors in the order of their first appearance are 8, 16, 24, 20, 12, 32, 48, ...
The number of composites between a(n) and its next prime are 3, 3, 3, 3, 3, 3, 5, 3, 5, 3, ... Are there terms with number of composites larger than 5?

Examples

			229 is a term since between 229 and its next prime, 233, there are 3 composite numbers, 230, 231 and 232 and all of them have the same number of divisors, 8.
		

Crossrefs

Programs

  • Mathematica
    seqQ[n_] := PrimeQ[n] && (nx=NextPrime[n]) > n + 2 && Length @ Union @ DivisorSigma[0, Range[n+1, nx-1]] == 1; Select[Range[10^6], seqQ]
Showing 1-9 of 9 results.