A075702 Numbers k such that the k-th prime divides the k-th Fibonacci number.
2160, 3048, 27094, 251712, 505768, 936240, 2182656, 2582372, 487568736, 1261336587, 1424530096
Offset: 1
Programs
-
Maple
f:= proc(n) local p, m, r, t, F; p:= ithprime(n); if member(p mod 5, {1,4}) then m:= igcd(n,p-1); r:= (numtheory:-msqrt(5,p)-3)/2 mod p; r &^ m mod p = 1 else F:= GF(p,2,t^2+3*t+1); m:= igcd(n,p^2-1); r:= F:-ConvertIn(t); F:-ConvertOut(F:-`^`(r,m)) = 1 fi end proc: select(f, [$4 .. 10^5]); # Robert Israel, Dec 24 2014
-
Mathematica
(* Mathematica's Fibonacci function is not used so as to speed up the search. *) fibo = {1, 1}; divFiboNPrimes = {}; Do[len = Length[fibo]; n = fibo[[len]] + fibo[[len - 1]]; fibo = Append[fibo, n]; If[Mod[n, Prime[i]] == 0, divFiboNPrimes = Append[divFiboNPrimes, i]], {i, 3, 10^7}]; divFiboNPrimes
-
PARI
v=0; w=1; for(n=2,m,f=v+w; if(f%prime(n)==0,print1(n,",")); v=w; w=f)
Extensions
a(4)-a(6) from Klaus Brockhaus, Oct 04 2002
a(7)-a(8) from Zak Seidov, Nov 03 2009
a(9)-a(11) from Giovanni Resta, Jul 20 2013
Comments