cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075702 Numbers k such that the k-th prime divides the k-th Fibonacci number.

Original entry on oeis.org

2160, 3048, 27094, 251712, 505768, 936240, 2182656, 2582372, 487568736, 1261336587, 1424530096
Offset: 1

Views

Author

Joseph L. Pe, Oct 02 2002

Keywords

Comments

a(12) > 2*10^9. - Giovanni Resta, Jul 20 2013
Let r be a root of X^2 + 3*X + 1 in GF(prime(n)^2). Then n is in the sequence if and only if r^n = 1. - Robert Israel, Dec 24 2014

Crossrefs

Programs

  • Maple
    f:= proc(n)
      local p, m, r, t, F;
      p:= ithprime(n);
      if member(p mod 5, {1,4}) then
      m:= igcd(n,p-1);
        r:= (numtheory:-msqrt(5,p)-3)/2 mod p;
        r &^ m mod p = 1
      else
        F:= GF(p,2,t^2+3*t+1);
        m:= igcd(n,p^2-1);
        r:= F:-ConvertIn(t);
        F:-ConvertOut(F:-`^`(r,m)) = 1
      fi
    end proc:
    select(f, [$4 .. 10^5]); # Robert Israel, Dec 24 2014
  • Mathematica
    (* Mathematica's Fibonacci function is not used so as to speed up the search. *) fibo = {1, 1}; divFiboNPrimes = {}; Do[len = Length[fibo]; n = fibo[[len]] + fibo[[len - 1]]; fibo = Append[fibo, n]; If[Mod[n, Prime[i]] == 0, divFiboNPrimes = Append[divFiboNPrimes, i]], {i, 3, 10^7}]; divFiboNPrimes
  • PARI
    v=0; w=1; for(n=2,m,f=v+w; if(f%prime(n)==0,print1(n,",")); v=w; w=f)

Extensions

a(4)-a(6) from Klaus Brockhaus, Oct 04 2002
a(7)-a(8) from Zak Seidov, Nov 03 2009
a(9)-a(11) from Giovanni Resta, Jul 20 2013