A075778 Decimal expansion of the real root of x^3 + x^2 - 1.
7, 5, 4, 8, 7, 7, 6, 6, 6, 2, 4, 6, 6, 9, 2, 7, 6, 0, 0, 4, 9, 5, 0, 8, 8, 9, 6, 3, 5, 8, 5, 2, 8, 6, 9, 1, 8, 9, 4, 6, 0, 6, 6, 1, 7, 7, 7, 2, 7, 9, 3, 1, 4, 3, 9, 8, 9, 2, 8, 3, 9, 7, 0, 6, 4, 6, 0, 8, 0, 6, 5, 5, 1, 2, 8, 0, 8, 1, 0, 9, 0, 7, 3, 8, 2, 2, 7, 0, 9, 2, 8, 4, 2, 2, 5, 0, 3, 0, 3, 6, 4, 8, 3, 7, 7
Offset: 0
Examples
0.7548776662466927600495088963585286918946066...
References
- Roman Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, submitted to Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
Links
- H. R. P. Ferguson, On a Generalization of the Fibonacci Numbers Useful in Memory Allocation Schema or All About the Zeroes of Z^k - Z^{k - 1} - 1, k > 0, Fibonacci Quarterly, Volume 14, Number 3, October, 1976 (see Table 2 p. 238).
- Index entries for algebraic numbers, degree 3
Programs
-
Maple
A075778 := proc() 1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3; -% ; end proc: # R. J. Mathar, Jan 22 2013
-
Mathematica
RealDigits[N[Solve[x^3 + x^2 - 1 == 0, x] [[1]] [[1, 2]], 111]] [[1]] RealDigits[x /. FindRoot[x^3 + x^2 == 1, {x, 1}, WorkingPrecision -> 120]][[1]] (* Harvey P. Dale, Nov 23 2012 *)
-
PARI
solve(x=0, 1, x^3+x^2-1)
-
PARI
polrootsreal(x^3 + x^2 - 1)[1] \\ Charles R Greathouse IV, Jul 23 2020
Formula
Let 0 < a < 1 be any real number. Then a is the lesser and 1 is the greater and a^2/1 = 1/(a+1) and a^3 + a^2 - 1 = 0. Solving this using PARI we have 0.7548776662466927600495088964... . The general cubic can also be solved in radicals.
Equals -(1/3) + (1/3)*(25/2 - (3*sqrt(69))/2)^(1/3) + (1/3)*((1/2)*(25 + 3*sqrt(69)))^(1/3).
Extensions
More terms from Robert G. Wilson v, Oct 10 2002
Comments