cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075830 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) = (b(n)*x + c(n))/(a(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.

Original entry on oeis.org

0, 1, 1, 5, 7, 47, 37, 319, 533, 1879, 1627, 20417, 18107, 263111, 237371, 52279, 95549, 1768477, 1632341, 33464927, 155685007, 166770367, 156188887, 3825136961, 3602044091, 19081066231, 18051406831, 57128792093, 7751493599
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2002

Keywords

Comments

For x real <> 1 - 1/log(2), Lim_{n -> infinity} abs(u(n)-n) = abs((x - 1)/(1 + (x - 1)*log(2))). [Corrected by Petros Hadjicostas, May 18 2020]
From Petros Hadjicostas, May 05 2020: (Start)
Given x > 0, u(n) = (A075827(n)*x + A075828(n))/(a(n)*x + A075829(n)) = (b(n)*x + c(n))/(a(n)*x + d(n)) with gcd(gcd(b(n), c(n)), gcd(a(n), d(n))) = 1 for each n >= 1.
Conjecture 1: Define the sequences (A(n): n >= 1) and (B(n): n >= 1) by A(n+1) = n^2/A(n) + 1 for n >= 2 with A(1) = infinity and A(2) = 1, and B(n+1) = n^2/B(n) + 1 for n >= 3 with B(1) = 0, B(2) = infinity, and B(3) = 1. Then a(n) = denominator(A(n)), b(n) = numerator(A(n)), c(n) = numerator(B(n)), and d(n) = denominator(B(n)) (assuming infinity = 1/0). Also, gcd(a(n), d(n)) = 1.
In 2002, Michael Somos claimed that d(n) = A024168(n-1)/gcd(A024168(n-1), A024168(n)) for n >= 2. In 2006, N. J. A. Sloane claimed that a(n) = A058313(n-1) for n >= 2 while Alexander Adamchuk claimed that d(n) = A058312(n-1) - A058313(n-1) for n >= 2.
Conjecture 2: a(n) = A024167(n-1)/gcd(A024167(n-1), A024167(n)).
Conjecture 3: b(p) = a(p+1) for p = 1 or prime. In general, it seems that b(n) = A048671(n)*a(n+1) for all n for which A048671(n) < n.
Conjecture 4: c(n) = n*(a(n) + d(n)) - b(n) for n >= 1. (End)
All conjectures are proved in the link below except for the second part of Conjecture 3. - Petros Hadjicostas, May 21 2020

Crossrefs

Apart from the leading term, same as A058313.
Cf. A075827 (= b), A075828 (= c), A075829 (= d).

Programs

  • PARI
    u(n)=if(n<2,x,(n-1)^2/u(n-1)+1);
    a(n)=polcoeff(denominator(u(n)),1,x);

Extensions

Name edited by Petros Hadjicostas, May 04 2020