A075830 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) = (b(n)*x + c(n))/(a(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.
0, 1, 1, 5, 7, 47, 37, 319, 533, 1879, 1627, 20417, 18107, 263111, 237371, 52279, 95549, 1768477, 1632341, 33464927, 155685007, 166770367, 156188887, 3825136961, 3602044091, 19081066231, 18051406831, 57128792093, 7751493599
Offset: 1
Keywords
Links
- Petros Hadjicostas, Proofs of various results about the sequence u(n), 2020.
Crossrefs
Programs
-
PARI
u(n)=if(n<2,x,(n-1)^2/u(n-1)+1); a(n)=polcoeff(denominator(u(n)),1,x);
Extensions
Name edited by Petros Hadjicostas, May 04 2020
Comments