A075841 Numbers k such that 2*k^2 - 9 is a square.
3, 15, 87, 507, 2955, 17223, 100383, 585075, 3410067, 19875327, 115841895, 675176043, 3935214363, 22936110135, 133681446447, 779152568547, 4541233964835, 26468251220463, 154268273357943, 899141388927195
Offset: 1
References
- A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Tanya Khovanova, Recursive Sequences
- J. J. O'Connor and E. F. Robertson, Pell's Equation
- Eric Weisstein's World of Mathematics, Pell Equation.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Programs
-
Mathematica
CoefficientList[Series[3 (1 - x)/(1 - 6 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 11 2014 *) LinearRecurrence[{6,-1},{3,15},20] (* Harvey P. Dale, Jun 05 2023 *)
-
PARI
isok(n) = issquare(2*n^2-9); \\ Michel Marcus, Jul 10 2017
Formula
a(n) = 3*sqrt(2)/4*((1+sqrt(2))^(2*n-1)-(1-sqrt(2))^(2*n-1)) = 6*a(n-1) - a(n-2).
G.f.: 3*x*(1-x)/(1-6*x+x^2). - Philippe Deléham, Nov 17 2008
a(n) = 3*A001653(n). - R. J. Mathar, Sep 27 2014
Comments