A076094
First n-digit prime encountered in decimal expansion of Pi (ignoring the initial 3).
Original entry on oeis.org
5, 41, 653, 4159, 14159, 358979, 1592653, 28841971, 795028841, 5926535897, 93238462643, 141592653589, 9265358979323, 23846264338327, 841971693993751, 8628034825342117, 89793238462643383, 348253421170679821, 3832795028841971693, 89793238462643383279
Offset: 1
Jean-Christophe Colin (jc-colin(AT)wanadoo.fr), Oct 31 2002
-
With[{pid=Rest[RealDigits[Pi,10,1000][[1]]]},Table[Select[ FromDigits/@ Partition[ pid,n,1],PrimeQ,1],{n,20}]]//Flatten (* Harvey P. Dale, May 01 2017 *)
A076106
Out of all the n-digit primes, which one takes the longest time to appear in the digits of Pi (ignoring the initial 3)? The answer is a(n), and it appears at position A076130(n).
Original entry on oeis.org
7, 73, 373, 9337, 35569, 805289, 9271903
Offset: 1
Jean-Christophe Colin (jc-colin(AT)wanadoo.fr), Oct 31 2002
Of all the 2-digit primes, 11 to 97, the last one to appear in Pi is 73, at position 299 (see A076130). - _N. J. A. Sloane_, Nov 28 2019
-
# download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then
with open('pi-billion.txt', 'r') as f: digits_of_pi = f.readline()[2:]
# from sympy import S
# digits_of_pi = str(S.Pi.n(72*10**4))[2:] # alternate to loading data
from sympy import primerange
def A076106_A076130(n):
global digits_of_pi
bigp, bigloc = None, -1
for p in primerange(10**(n-1), 10**n):
loc = digits_of_pi.find(str(p))
if loc == -1: print("not enough digits", n, p)
if loc > bigloc:
bigloc = loc
bigp = p
return (bigp, bigloc+1)
print([A076106_A076130(n)[0] for n in range(1, 6)]) # Michael S. Branicky, Jul 08 2021
A076130
Out of all the n-digit primes, which one takes the longest time to appear in the digits of Pi (ignoring the initial 3)? The answer is A076106(n) and the position where this prime appears is a(n).
Original entry on oeis.org
13, 299, 5229, 75961, 715492, 11137824, 135224164
Offset: 1
Jean-Christophe Colin (jc-colin(AT)wanadoo.fr), Oct 31 2002
Of all the 2-digit primes, 11 to 97, the last one to appear in Pi is 73, at position 299 (see A076106). - _N. J. A. Sloane_, Nov 28 2019
Showing 1-3 of 3 results.
Comments