cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076217 a(1)=1, a(n) = a(n-1) + n * sign(n-a(n-1)).

Original entry on oeis.org

1, 3, 3, 7, 2, 8, 1, 9, 9, 19, 8, 20, 7, 21, 6, 22, 5, 23, 4, 24, 3, 25, 2, 26, 1, 27, 27, 55, 26, 56, 25, 57, 24, 58, 23, 59, 22, 60, 21, 61, 20, 62, 19, 63, 18, 64, 17, 65, 16, 66, 15, 67, 14, 68, 13, 69, 12, 70, 11, 71, 10, 72, 9, 73, 8, 74, 7, 75, 6, 76, 5, 77, 4, 78, 3, 79, 2, 80
Offset: 1

Views

Author

Benoit Cloitre, Nov 03 2002

Keywords

Comments

a(n) = 1 correspond to n = A058481(m). - Bill McEachen, Aug 31 2023

Examples

			a(2) = a(1)+sign(2-a(1))*2 = 1 + 2 = 3.
		

Crossrefs

Programs

  • Haskell
    a076217 n = a076217_list !! (n-1)
    a076217_list = 1 : zipWith (+) a076217_list
       (zipWith (*) [2..] $ map a057427 $ zipWith (-) [2..] a076217_list)
    -- Reinhard Zumkeller, Apr 21 2013
    
  • Mathematica
    RecurrenceTable[{a[1]==1,a[n]==a[n-1]+n Sign[n-a[n-1]]},a[n],{n,80}] (* Harvey P. Dale, Jun 14 2011 *)
  • PARI
    alist(N) = my(r, t=0); vector(N, i, t=r=t+i*sign(i-t)); \\ Ruud H.G. van Tol, May 10 2024

Formula

If 3^n>2*m>= 2*3^(n-1); a(3^n-2*m) = m; if 3^n>2*m+1>=2*3^(n-1)+1 a(3^n-2*m-1) = 3^n - m; special case of partial sum: sum(k=1, 3^n, a(k)) = (3/8)*(9^n-1) + (3^(n+1)-1)/2.
Conjecture: a(n) = -a(n-1)+a(n-2)+a(n-3) for n>5. G.f.: -x*(27*x^28 +54*x^27 +27*x^26 +9*x^10 +18*x^9 +9*x^8 +3*x^4 +6*x^3 +5*x^2 +4*x +1) / ((x -1)*(x +1)^2). - Colin Barker, Feb 25 2013
Regarding Barker's conjectured recurrence, it seems to fail at n= powers of 3, and the 2 successive terms. So it holds except for n= 9-11, 27-29, 81-83, 243-245, .... - Bill McEachen, Mar 21 2025