cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076218 Numbers n such that 2*n^2 - 3*n + 1 is a square.

Original entry on oeis.org

0, 1, 5, 145, 4901, 166465, 5654885, 192099601, 6525731525, 221682772225, 7530688524101, 255821727047185, 8690408031080165, 295218051329678401, 10028723337177985445, 340681375412721826705, 11573138040695364122501, 393146012008229658338305
Offset: 1

Views

Author

Gregory V. Richardson, Nov 03 2002

Keywords

Comments

Limit_{n -> infinity} a(n)/a(n-1) = 33.970562748477140585620264690516... = 17 + 12*sqrt(2).
Conjecture: a nonzero number occurs twice in A055524 if and only if it's in this sequence. - J. Lowell, Jul 23 2016
Equivalently, n=0 or both n-1 and 2*n-1 are perfect squares. - Sture Sjöstedt, Feb 22 2017

Examples

			5 is in the sequence since 2*5^2 - 3*5 + 1 = 50 - 15 + 1 = 36 is a square. - _Michael B. Porter_, Jul 24 2016
		

Crossrefs

Cf. similar sequences with closed form ((1 + sqrt(2))^(4*r) + (1 - sqrt(2))^(4*r))/8 + k/4: A084703 (k=-1), this sequence (k=3), A278310 (k=-5).

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{35,-35,1},{1,5,145},20]] (* Harvey P. Dale, Nov 27 2012 *)
  • PARI
    a(n)=if(n>1,([0,1,0;0,0,1;1,-35,35]^n*[145;5;1])[1,1],0) \\ Charles R Greathouse IV, Jul 24 2016
    
  • PARI
    concat(0, Vec(x^2*(1-30*x+5*x^2) / ((1-x)*(1-34*x+x^2)) + O(x^30))) \\ Colin Barker, Nov 21 2016

Formula

From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 04 2002: (Start)
a(n) = ( (3+(17+12*sqrt(2))^(n-1)) + (3+(17-12*sqrt(2))^(n-1)) )/8 for n>=1.
a(n) = 35 * a(n-1) - 35 * a(n-2) + a(n-3).
G.f.: (x-30*x^2+5*x^3)/(1-35*x+35*x^2-x^3). (End)
Product of adjacent odd-indexed Pell numbers (A000129). - Gary W. Adamson, Jun 07 2003
sqrt(2) - 1 = 0.414213562... = 2/5 + 2/145 + 2/4901 + 2/166465 + ... = Sum_{n>=2} 2/a(n). - Gary W. Adamson, Jun 07 2003
For n > 0, one more than square of adjacent even-indexed Pell numbers (A000129). - Charlie Marion, Mar 09 2005
a(n) = A001652(n-1) + 2*A001652(n-1)*A001652(n-2) + A001652(n-2) + 2. - Charlie Marion, Nov 24 2018