cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076220 Number of permutations of 1..n in which every pair of adjacent numbers are relatively prime.

Original entry on oeis.org

1, 1, 2, 6, 12, 72, 72, 864, 1728, 13824, 22032, 555264, 476928, 17625600, 29599488, 321115392, 805146624, 46097049600, 36481536000, 2754120268800, 3661604352000, 83905105305600, 192859121664000, 20092043520000000, 15074060547686400, 1342354557616128000
Offset: 0

Views

Author

Lior Manor, Nov 04 2002

Keywords

Examples

			a(4) = 12 since there are 12 permutations of 1234 in which every 2 adjacent numbers are relatively prime: 1234, 1432, 2134, 2143, 2314, 2341, 3214, 3412, 4123, 4132, 4312, 4321.
		

Crossrefs

Cf. A086595.

Programs

  • Maple
    with(combinat): for n from 1 to 7 do P:=permute(n): ct:=0: for j from 1 to n! do if add(gcd(P[j][i+1],P[j][i]),i=1..n-1)=n-1 then ct:=ct+1 else ct:=ct fi od: a[n]:=ct: od: seq(a[n],n=1..7); # Emeric Deutsch, Mar 28 2005
    # second Maple program:
    b:= proc(s, t) option remember; `if`(s={}, 1, add(
          `if`(igcd(i, t)>1, 0, b(s minus {i}, i)), i=s))
        end:
    a:= n-> b({$1..n}, 1009):
    seq(a(n), n=0..14);  # Alois P. Heinz, Aug 13 2017
  • Mathematica
    f[n_] := Block[{p = Permutations[ Table[i, {i, 1, n}]], c = 0, k = 1}, While[k < n! + 1, If[ Union[ GCD @@@ Partition[p[[k]], 2, 1]] == {1}, c++ ]; k++ ]; c]; Do[ Print[ f[n]], {n, 2, 15}]
  • PARI
    {A076220(n)=local(A, d, n, r, M); A=matrix(n,n,i,j,if(gcd(i,j)==1,1,0)); r=0; for(s=1,2^n-1,M=vecextract(A,s,s)^(n-1);d=matsize(M)[1];r+=(-1)^(n-d)*sum(i=1,d,sum(j=1,d,M[i,j])));r} \\ Max Alekseyev, Jun 12 2005

Formula

a(p-1) = A086595(p) for prime p. - Max Alekseyev, Jun 12 2005

Extensions

Extended by Frank Ruskey, Nov 11 2002
a(15)-a(16) from Ray Chandler and Joshua Zucker, Apr 10 2005
a(17)-a(24) from Max Alekseyev, Jun 12 2005
a(0) prepended and a(25) added by Alois P. Heinz, Aug 13 2017