A076220 Number of permutations of 1..n in which every pair of adjacent numbers are relatively prime.
1, 1, 2, 6, 12, 72, 72, 864, 1728, 13824, 22032, 555264, 476928, 17625600, 29599488, 321115392, 805146624, 46097049600, 36481536000, 2754120268800, 3661604352000, 83905105305600, 192859121664000, 20092043520000000, 15074060547686400, 1342354557616128000
Offset: 0
Keywords
Examples
a(4) = 12 since there are 12 permutations of 1234 in which every 2 adjacent numbers are relatively prime: 1234, 1432, 2134, 2143, 2314, 2341, 3214, 3412, 4123, 4132, 4312, 4321.
Crossrefs
Cf. A086595.
Programs
-
Maple
with(combinat): for n from 1 to 7 do P:=permute(n): ct:=0: for j from 1 to n! do if add(gcd(P[j][i+1],P[j][i]),i=1..n-1)=n-1 then ct:=ct+1 else ct:=ct fi od: a[n]:=ct: od: seq(a[n],n=1..7); # Emeric Deutsch, Mar 28 2005 # second Maple program: b:= proc(s, t) option remember; `if`(s={}, 1, add( `if`(igcd(i, t)>1, 0, b(s minus {i}, i)), i=s)) end: a:= n-> b({$1..n}, 1009): seq(a(n), n=0..14); # Alois P. Heinz, Aug 13 2017
-
Mathematica
f[n_] := Block[{p = Permutations[ Table[i, {i, 1, n}]], c = 0, k = 1}, While[k < n! + 1, If[ Union[ GCD @@@ Partition[p[[k]], 2, 1]] == {1}, c++ ]; k++ ]; c]; Do[ Print[ f[n]], {n, 2, 15}]
-
PARI
{A076220(n)=local(A, d, n, r, M); A=matrix(n,n,i,j,if(gcd(i,j)==1,1,0)); r=0; for(s=1,2^n-1,M=vecextract(A,s,s)^(n-1);d=matsize(M)[1];r+=(-1)^(n-d)*sum(i=1,d,sum(j=1,d,M[i,j])));r} \\ Max Alekseyev, Jun 12 2005
Formula
a(p-1) = A086595(p) for prime p. - Max Alekseyev, Jun 12 2005
Extensions
Extended by Frank Ruskey, Nov 11 2002
a(15)-a(16) from Ray Chandler and Joshua Zucker, Apr 10 2005
a(17)-a(24) from Max Alekseyev, Jun 12 2005
a(0) prepended and a(25) added by Alois P. Heinz, Aug 13 2017