cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076290 Sum of the semiprime divisors of n.

Original entry on oeis.org

0, 0, 0, 4, 0, 6, 0, 4, 9, 10, 0, 10, 0, 14, 15, 4, 0, 15, 0, 14, 21, 22, 0, 10, 25, 26, 9, 18, 0, 31, 0, 4, 33, 34, 35, 19, 0, 38, 39, 14, 0, 41, 0, 26, 24, 46, 0, 10, 49, 35, 51, 30, 0, 15, 55, 18, 57, 58, 0, 35, 0, 62, 30, 4, 65, 61, 0, 38, 69, 59, 0, 19, 0, 74, 40, 42, 77, 71, 0
Offset: 1

Views

Author

Joseph L. Pe, Nov 24 2002

Keywords

Comments

A semiprime is a product of two primes.
Inverse Möbius transform of n * c(n), where c = A064911. - Wesley Ivan Hurt, Jul 22 2025

Examples

			The divisors of 12 are 1, 2, 3, 4, 6, 12, of which 4 and 6 are semiprime. Hence a(12) = 4 + 6 = 10.
		

Crossrefs

Cf. A001222 (Omega), A001358, A064911.

Programs

  • Maple
    a:= proc(n) local l, m; l:=ifactors(n)[2]; m:=nops(l);
          add(`if`(l[i][2]>1, l[i][1]^2, 0)+
          add(l[i][1]*l[j][1], j=i+1..m), i=1..m)
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Jul 18 2013
  • Mathematica
    isSP[n_] := Module[{f, l}, f = FactorInteger[n]; l = Length[f]; (l == 2 && f[[1]][[2]] == 1 && f[[2]][[2]] == 1) || (l == 1 && f[[1]][[2]] == 2)]; f[n_] := Module[{a, d, l}, a = {}; d = Divisors[n]; l = Length[d]; For[i = 1, i <= l, i++, If[isSP[d[[i]]], a = Append[a, d[[i]]]]]; a]; Table[Apply[Plus, f[i]], {i, 1, 100}]
    ssd[n_]:=Total[Select[Divisors[n],PrimeOmega[#]==2&]]; Array[ssd,80] (* Harvey P. Dale, Jul 29 2025 *)
  • PARI
    a(n) = local(fn, r, om); fn=factor(n); r=om=0; for(i=1,matsize(fn)[1], om+=fn[i,1]; r+=fn[i,1]^2*if(fn[i,2]==1,-1,1)); (r+om^2)\2 \\ Franklin T. Adams-Watters, Jul 26 2009

Formula

a(n) = Sum_{d|n} d * [Omega(d) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021