A076290 Sum of the semiprime divisors of n.
0, 0, 0, 4, 0, 6, 0, 4, 9, 10, 0, 10, 0, 14, 15, 4, 0, 15, 0, 14, 21, 22, 0, 10, 25, 26, 9, 18, 0, 31, 0, 4, 33, 34, 35, 19, 0, 38, 39, 14, 0, 41, 0, 26, 24, 46, 0, 10, 49, 35, 51, 30, 0, 15, 55, 18, 57, 58, 0, 35, 0, 62, 30, 4, 65, 61, 0, 38, 69, 59, 0, 19, 0, 74, 40, 42, 77, 71, 0
Offset: 1
Examples
The divisors of 12 are 1, 2, 3, 4, 6, 12, of which 4 and 6 are semiprime. Hence a(12) = 4 + 6 = 10.
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) local l, m; l:=ifactors(n)[2]; m:=nops(l); add(`if`(l[i][2]>1, l[i][1]^2, 0)+ add(l[i][1]*l[j][1], j=i+1..m), i=1..m) end: seq(a(n), n=1..120); # Alois P. Heinz, Jul 18 2013
-
Mathematica
isSP[n_] := Module[{f, l}, f = FactorInteger[n]; l = Length[f]; (l == 2 && f[[1]][[2]] == 1 && f[[2]][[2]] == 1) || (l == 1 && f[[1]][[2]] == 2)]; f[n_] := Module[{a, d, l}, a = {}; d = Divisors[n]; l = Length[d]; For[i = 1, i <= l, i++, If[isSP[d[[i]]], a = Append[a, d[[i]]]]]; a]; Table[Apply[Plus, f[i]], {i, 1, 100}] ssd[n_]:=Total[Select[Divisors[n],PrimeOmega[#]==2&]]; Array[ssd,80] (* Harvey P. Dale, Jul 29 2025 *)
-
PARI
a(n) = local(fn, r, om); fn=factor(n); r=om=0; for(i=1,matsize(fn)[1], om+=fn[i,1]; r+=fn[i,1]^2*if(fn[i,2]==1,-1,1)); (r+om^2)\2 \\ Franklin T. Adams-Watters, Jul 26 2009
Formula
a(n) = Sum_{d|n} d * [Omega(d) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
Comments