cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076309 a(n) = floor(n/10) - 2*(n mod 10).

Original entry on oeis.org

0, -2, -4, -6, -8, -10, -12, -14, -16, -18, 1, -1, -3, -5, -7, -9, -11, -13, -15, -17, 2, 0, -2, -4, -6, -8, -10, -12, -14, -16, 3, 1, -1, -3, -5, -7, -9, -11, -13, -15, 4, 2, 0, -2, -4, -6, -8, -10, -12, -14, 5, 3, 1, -1, -3, -5, -7, -9, -11, -13, 6, 4, 2, 0, -2, -4, -6, -8, -10
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

Delete the last digit from n and subtract twice this digit from the shortened number. - N. J. A. Sloane, May 25 2019
(n==0 modulo 7) iff (a(n)==0 modulo 7); applied recursively, this property provides a useful test for divisibility by 7.

Examples

			695591 is not a multiple of 7, as 695591 -> 69559-2*1=69557 -> 6955-2*7=6941 -> 694-2*1=692 -> 69-2*2=65=7*9+2, therefore the answer is NO.
Is 3206 divisible by 7? 3206 -> 320-2*6=308 -> 30-2*8=14=7*2, therefore the answer is YES, indeed 3206=2*7*229.
		

References

  • Paul Erdős and János Surányi. Topics in the Theory of Numbers. New York: Springer, 2003. Problem 6, page 3.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.2 Fundamental Operations, p. 121.
  • Karl Menninger, Rechenkniffe, Vandenhoeck & Ruprecht in Goettingen (1961), 79A.

Crossrefs

Programs

  • Haskell
    a076309 n =  n' - 2 * m where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Mathematica
    Table[Floor[n/10] - 2*Mod[n, 10], {n, 0, 100}] (* G. C. Greubel, Apr 07 2016 *)
  • PARI
    a(n) = n\10 - 2*(n % 10); \\ Michel Marcus, Apr 07 2016

Formula

From R. J. Mathar, Nov 23 2010: (Start)
a(n) = a(n-1) + a(n-10) - a(n-11).
G.f.: x*(-2 -2*x -2*x^2 -2*x^3 -2*x^4 -2*x^5 -2*x^6 -2*x^7 -2*x^8 +19*x^9)/((1+x)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)*(x-1)^2). (End)