cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A008589 Multiples of 7.

Original entry on oeis.org

0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 371, 378
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Also the Engel expansion of exp(1/7); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
Complement of A047304; A082784(a(n))=1; A109720(a(n))=0. - Reinhard Zumkeller, Nov 30 2009
The most likely sum of digits to occur when randomly tossing n pairs of (fair) six-sided dice. - Dennis P. Walsh, Jan 26 2012

Examples

			For n=2, a(2)=14 because 14 is the most likely sum (of the possible sums 4, 5, ..., 24) to occur when tossing 2 pairs of six-sided dice. - _Dennis P. Walsh_, Jan 26 2012
		

Crossrefs

Programs

Formula

(floor(a(n)/10) - 2*(a(n) mod 10)) == 0 modulo 7, see A076309. - Reinhard Zumkeller, Oct 06 2002
a(n) = 7*n = 2*a(n-1)-a(n-2); G.f.: 7*x/(x-1)^2. - Vincenzo Librandi, Dec 24 2010
E.g.f.: 7*x*exp(x). - Ilya Gutkovskiy, May 11 2016

A082784 Characteristic function of multiples of 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

This sequence is the Euler transformation of A185017. - Jason Kimberley, Oct 14 2011

Examples

			a(14) = a(2*7) = 1; a(41) = a(5*7+6) = 0.
		

Crossrefs

Characteristic function of multiples of g: A000007 (g=0), A000012 (g=1), A059841 (g=2), A079978 (g=3), A121262 (g=4), A079998 (g=5), A079979 (g=6), this sequence (g=7). - Jason Kimberley, Oct 14 2011

Programs

Formula

a(n) = 0^(n mod 7).
a(0)=1, a(n)=0 for 1<=n<7, a(n+7)=a(n).
a(n) = 1 - (n^6 mod 7). - Paolo P. Lava, Oct 02 2006
a(n) = 1 - A109720(n); a(A008589(n)) = 1; a(A047304(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
a(n) = floor(n/7)-floor((n-1)/7). - Tani Akinari, Oct 26 2012
a(n) = C(n-1,6) mod 7. - Wesley Ivan Hurt, Oct 07 2014
From Wesley Ivan Hurt, Jul 11 2016: (Start)
G.f.: 1/(1-x^7).
a(n) = a(n-7) for n>6.
a(n) = (gcd(n,7) - 1)/6. (End)

Extensions

Wrong formula and keyword mult removed by Amiram Eldar, Oct 31 2023

A076314 a(n) = floor(n/10) + (n mod 10).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

For n<100 this is equal to the digital sum of n (see A007953). - Hieronymus Fischer, Jun 17 2007

Examples

			a(15) = floor(15 / 10) + (15 mod 10) = 1 + 5 = 6. - _Indranil Ghosh_, Feb 13 2017
		

Crossrefs

Programs

Formula

From Hieronymus Fischer, Jun 17 2007: (Start)
a(n) = n - 9*floor(n/10).
a(n) = (n + 9*(n mod 10))/10.
a(n) = n - 9*A002266(A004526(n)) = n - 9*A004526(A002266(n)).
a(n) = (n + 9*A010879(n))/10.
a(n) = (n + 9*A000035(n) + 18*A010874(A004526(n)))/10.
a(n) = (n + 9*A010874(n) + 45*A000035(A002266(n)))/10.
G.f.: x*(8*x^10 - 9*x^9 + 1)/((1 - x^10)*(1 - x)^2). (End)
a(n) = A033930(n) for 1 <= n < 100. - R. J. Mathar, Sep 21 2008
a(n) = +a(n-1) + a(n-10) - a(n-11). - R. J. Mathar, Feb 20 2011

A076313 a(n) = floor(n/10) - (n mod 10).

Original entry on oeis.org

0, -1, -2, -3, -4, -5, -6, -7, -8, -9, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, 8, 7, 6, 5, 4
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

For n<100 equal to the negated alternating digital sum of n (see A055017). - Hieronymus Fischer, Jun 17 2007

Crossrefs

Programs

  • Haskell
    a076313 = uncurry (-) . flip divMod 10 -- Reinhard Zumkeller, Jun 01 2013
  • Mathematica
    Table[Floor[n/10]-Mod[n,10],{n,0,100}] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{0,-1,-2,-3,-4,-5,-6,-7,-8,-9,1},100] (* Harvey P. Dale, Nov 02 2022 *)
  • PARI
    a(n)=n\10-n%10 \\ Charles R Greathouse IV, Jan 30 2012
    

Formula

From Hieronymus Fischer, Jun 17 2007: (Start)
a(n) = 11*floor(n/10)-n.
a(n) = (n-11*(n mod 10))/10.
a(n) = 11*A002266(A004526(n))-n=11*A004526(A002266(n))-n.
a(n) = (n-11*A010879(n))/10.
a(n) = (n-11*A000035(n)-22*A010874(A004526(n)))/10.
a(n) = (n-11*A010874(n)-55*A000035(A002266(n)))/10.
G.f.: x*(-8*x^10+11*x^9-1)/((1-x^10)*(1-x)^2). (End)

A076311 a(n) = floor(n/10) - 5*(n mod 10).

Original entry on oeis.org

0, -5, -10, -15, -20, -25, -30, -35, -40, -45, 1, -4, -9, -14, -19, -24, -29, -34, -39, -44, 2, -3, -8, -13, -18, -23, -28, -33, -38, -43, 3, -2, -7, -12, -17, -22, -27, -32, -37, -42, 4, -1, -6, -11, -16, -21, -26, -31, -36, -41, 5, 0, -5, -10, -15, -20, -25, -30, -35
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

(n==0 modulo 17) iff (a(n)==0 modulo 17); applied recursively, this property provides a divisibility test for numbers given in base 10 notation.

Examples

			12808 is not a multiple of 17, as 12808 -> 1280-5*8=1240 -> 124-5*0=124 -> 12-5*4=-8=17*(-1)+9, therefore the answer is NO.
Is 9248 divisible by 17? 9248 -> 924-5*8=884 -> 88-5*4=68=17*4, therefore the answer is YES.
		

References

  • Karl Menninger, Rechenkniffe, Vandenhoeck & Ruprecht in Goettingen (1961), 79A.

Crossrefs

Programs

  • Haskell
    a076311 n =  n' - 5 * m where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Magma
    [Floor(n/10)-5*(n mod 10): n in [0..50]]; // Vincenzo Librandi, Jun 23 2015
    
  • Mathematica
    Table[Floor[n/10]-5Mod[n,10],{n,0,60}] (* or *) LinearRecurrence[ {1,0,0,0,0,0,0,0,0,1,-1},{0,-5,-10,-15,-20,-25,-30,-35,-40,-45,1},60] (* Harvey P. Dale, Dec 21 2014 *)
  • PARI
    a(n)=n\10 - n%10*5 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n)= +a(n-1) +a(n-10) -a(n-11). G.f. x *(-5-5*x-5*x^2-5*x^3-5*x^4-5*x^5-5*x^6-5*x^7-5*x^8+46*x^9) / ( (1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) *(x-1)^2 ). - R. J. Mathar, Feb 20 2011

A076310 a(n) = floor(n/10) + 4*(n mod 10).

Original entry on oeis.org

0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 7, 11, 15, 19, 23
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

(n==0 modulo 13) iff (a(n)==0 modulo 13); applied recursively, this property provides a divisibility test for numbers given in base 10 notation.

Examples

			435598 is not a multiple of 13, as 435598 -> 43559+4*8=43591 -> 4359+4*1=4363 -> 436+4*3=448 -> 44+4*8=76 -> 7+4*6=29=13*2+3, therefore the answer is NO.
Is 8424 divisible by 13? 8424 -> 842+4*4=858 -> 85+4*8=117 -> 11+4*7=39=13*3, therefore the answer is YES.
		

References

  • Karl Menninger, Rechenkniffe, Vandenhoeck & Ruprecht in Goettingen (1961), 79A.

Crossrefs

Programs

  • Haskell
    a076310 n =  n' + 4 * m where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Magma
    [Floor(n/10)+4*(n mod 10): n in [0..75]]; // Vincenzo Librandi, Feb 27 2016
  • Maple
    A076310:=n->floor(n/10) + 4*(n mod 10); seq(A076310(n), n=0..100); # Wesley Ivan Hurt, Jan 30 2014
  • Mathematica
    Table[Floor[n/10] + 4*Mod[n, 10], {n, 0, 100}] (* Wesley Ivan Hurt, Jan 30 2014 *)
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{0,4,8,12,16,20,24,28,32,36,1},80] (* Harvey P. Dale, Sep 30 2015 *)
  • PARI
    a(n) = n\10 + 4*(n % 10); \\ Michel Marcus, Jan 31 2014
    

Formula

a(n) = +a(n-1) +a(n-10) -a(n-11). G.f.: -x*(-4-4*x-4*x^2-4*x^3-4*x^4-4*x^5-4*x^6-4*x^7-4*x^8+35*x^9) / ( (1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) *(x-1)^2 ). - R. J. Mathar, Feb 20 2011

A076312 a(n) = floor(n/10) + 2*(n mod 10).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 7, 9, 11, 13, 15, 17, 19, 21
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

Delete the last digit from n and add twice this digit to the shortened number. - N. J. A. Sloane, May 25 2019
(n==0 modulo 19) iff (a(n)==0 modulo 19); applied recursively, this property provides a useful test for divisibility by 19.

Examples

			26468 is not a multiple of 19, as 26468 -> 2646+2*8=2662 -> 266+2*2=270 -> 27+2*0=27=19*1+8, therefore the answer is NO.
Is 12882 divisible by 19? 12882 -> 1288+2*2=1292 -> 129+2*2=133 -> 13+2*3=19, therefore the answer is YES.
		

References

  • Erdős, Paul, and János Surányi. Topics in the Theory of Numbers. New York: Springer, 2003. Problem 6, page 3.
  • Karl Menninger, Rechenkniffe, Vandenhoeck & Ruprecht in Goettingen (1961), 79A.

Crossrefs

Programs

  • Haskell
    a076312 n =  n' + 2 * m where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Magma
    [Floor(n/10) + 2*(n mod 10): n in [0..100]]; // Vincenzo Librandi, Mar 05 2020
  • Mathematica
    f[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Most[idn]]+2idn[[-1]]]; Array[ f,80,0] (* Harvey P. Dale, Mar 01 2020 *)

Formula

G.f.: -x(17x^9-2-2x-2x^2-2x^3-2x^4-2x^5-2x^6-2x^7-2x^8)/((1-x)^2(1+x)(x^4+x^3+x^2+x+1)(x^4-x^3+x^2-x+1)). a(n)=A059995(n)+2*A010879(n). [R. J. Mathar, Jan 24 2009]

A336483 a(n) = floor(n/10) + (5 times last digit of n).

Original entry on oeis.org

0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 7
Offset: 0

Views

Author

Michel Marcus, Aug 11 2020

Keywords

Comments

If the resulting number is divisible by 7, then n is divisible by 7; (re)discovered by 12-year-old Nigerian Chika Ofili.

References

  • L. E. Dickson, History of the theory of numbers. Vol. I: Divisibility and primality. Chelsea Publishing Co., New York 1966.

Crossrefs

Programs

  • Mathematica
    Table[Floor[n/10]+5Mod[n,10],{n,0,80}] (* or  *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{0,5,10,15,20,25,30,35,40,45,1},80] (* Harvey P. Dale, Nov 01 2023 *)
  • PARI
    a(n) = 5*(n % 10) + (n\10);

Formula

From Stefano Spezia, Aug 11 2020: (Start)
O.g.f.: x*(5 + 5*x + 5*x^2 + 5*x^3 + 5*x^4 + 5*x^5 + 5*x^6 + 5*x^7 + 5*x^8 - 44*x^9)/(1 - x - x^10 + x^11).
a(n) = a(n-1) + a(n-10) - a(n-11) for n > 10. (End)
Showing 1-8 of 8 results.