cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 81 results. Next

A048730 Differences between A008589 (multiples of 7) and A048727, a(n) = ((n*7)-Xmult(n,7)).

Original entry on oeis.org

0, 0, 0, 12, 0, 8, 24, 28, 0, 0, 16, 28, 48, 56, 56, 60, 0, 0, 0, 12, 32, 40, 56, 60, 96, 96, 112, 124, 112, 120, 120, 124, 0, 0, 0, 12, 0, 8, 24, 28, 64, 64, 80, 92, 112, 120, 120, 124, 192, 192, 192, 204, 224, 232, 248
Offset: 0

Views

Author

Antti Karttunen, Apr 26 1999

Keywords

Comments

For n = binary n[k],n[k-1],...,n[0], bits a(n) = binary b[k+1],b[k],...,b[0] are b[i] = 1 when n[i-1] + n[i-2] + n[i-3] >= 2, so the majority bit 0 or 1 among the 3 bits of n below position i (with 0 bits below the radix point of n as necessary). This is since 7*n = 4*n + 2*n + n is n[i-1] + n[i-2] + n[i-3] at position i-1, and 4*n XOR 2*n XOR n is the same but no carry, so b[i] is the carry only. - Kevin Ryde, Mar 26 2021

Crossrefs

Positions of zeros are given by A048715. Cf. A048733, A342697.
Diagonal 7 of A061858.

Programs

A008591 Multiples of 9: a(n) = 9*n.

Original entry on oeis.org

0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 234, 243, 252, 261, 270, 279, 288, 297, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, 414, 423, 432, 441, 450, 459, 468, 477
Offset: 0

Views

Author

Keywords

Comments

An Iraqi tablet dating from the Middle Babylonian period (1400-1100 BC) gives a(1)-a(20), a(30), a(40), and a(50). See CDLI link for images and more information. - Charles R Greathouse IV, Jan 21 2017
Apart from 0, numbers whose digital root is 9. - Halfdan Skjerning, Mar 15 2018
Also numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 9. - Stefano Spezia, Jul 08 2025

Crossrefs

Programs

Formula

Complement of A168183; A168182(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
a(n) = A007953(A002283(n)). - Reinhard Zumkeller, Aug 06 2010
From Vincenzo Librandi, Dec 24 2010: (Start)
a(n) = 9*n = 2*a(n-1) - a(n-2).
G.f.: 9x/(x-1)^2. (End)
a(n) = A060544(n+1) - A060544(n). - Leo Tavares, Jul 17 2022
E.g.f.: 9*x*exp(x). - Stefano Spezia, Oct 08 2022

A121027 Multiples of 7 containing a 7 in their decimal representation.

Original entry on oeis.org

7, 70, 77, 147, 175, 217, 273, 287, 357, 371, 378, 427, 476, 497, 567, 574, 637, 672, 679, 700, 707, 714, 721, 728, 735, 742, 749, 756, 763, 770, 777, 784, 791, 798, 847, 875, 917, 973, 987, 1057, 1071, 1078, 1127, 1176, 1197, 1267, 1274, 1337, 1372, 1379
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[7*Range[500], MemberQ[IntegerDigits[#], 7] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is(n)=n%7==0 && setsearch(Set(digits(n)), 7) \\ Charles R Greathouse IV, Feb 12 2017

Formula

a(n) ~ 7n. - Charles R Greathouse IV, Feb 12 2017

Extensions

Typo in comment fixed by Reinhard Zumkeller, May 01 2011

A016993 a(n) = 7*n + 1.

Original entry on oeis.org

1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99, 106, 113, 120, 127, 134, 141, 148, 155, 162, 169, 176, 183, 190, 197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281, 288, 295, 302, 309, 316, 323, 330, 337, 344, 351, 358, 365, 372, 379
Offset: 0

Views

Author

Keywords

Comments

For n > 3, also the number of (not necessarily maximal) cliques in the n-web graph. - Eric W. Weisstein, Nov 29 2017
The number of notes in a musical scale of n octaves. - Geoffrey Trueman Falk, Feb 16 2023

Crossrefs

Cf. A093564 (column 1).

Programs

Formula

a(n) = 7*n + 1.
G.f.: (1+6*x)/(1-x)^2.
From Elmo R. Oliveira, Mar 07 2024: (Start)
a(n) = 2*a(n-1) - a(n-2).
E.g.f.: (1 + 7*x)*exp(x). (End)

A017089 a(n) = 8*n + 2.

Original entry on oeis.org

2, 10, 18, 26, 34, 42, 50, 58, 66, 74, 82, 90, 98, 106, 114, 122, 130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 226, 234, 242, 250, 258, 266, 274, 282, 290, 298, 306, 314, 322, 330, 338, 346, 354, 362, 370, 378, 386, 394, 402, 410, 418, 426
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 33 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 81 ).
First differences of A002939. - Aaron David Fairbanks, May 13 2014

Crossrefs

Programs

Formula

a(n) = 8*n+2; a(n) = 2*a(n-1)-a(n-2). - Vincenzo Librandi, May 28 2011
Sum_{n>=0} (-1)^n/a(n) = (Pi + 2*log(cot(Pi/8)))/(8*sqrt(2)). - Amiram Eldar, Dec 11 2021
From Elmo R. Oliveira, Mar 17 2024: (Start)
G.f.: 2*(1+3*x)/(1-x)^2.
E.g.f.: 2*exp(x)*(1 + 4*x).
a(n) = 2*A016813(n) = A008590(n) + 2. (End)

A017029 a(n) = 7*n + 4.

Original entry on oeis.org

4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277, 284, 291, 298, 305, 312, 319, 326, 333, 340, 347, 354, 361, 368, 375, 382
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.

Programs

Formula

G.f.: (3*x + 4)/(1-x)^2. - Vincenzo Librandi, Jan 27 2013
From Elmo R. Oliveira, Apr 12 2025: (Start)
E.g.f.: exp(x)*(4 + 7*x).
a(n) = 2*a(n-1) - a(n-2). (End)

Extensions

Extended by Ray Chandler, Jan 25 2005

A017017 a(n) = 7*n + 3.

Original entry on oeis.org

3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87, 94, 101, 108, 115, 122, 129, 136, 143, 150, 157, 164, 171, 178, 185, 192, 199, 206, 213, 220, 227, 234, 241, 248, 255, 262, 269, 276, 283, 290, 297, 304, 311, 318, 325, 332, 339, 346, 353, 360, 367, 374, 381
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Oct 17 2023: (Start)
G.f.: (3 + 4*x)/(1 - x)^2.
E.g.f.: (3 + 7*x)*exp(x). (End)

A113801 Numbers that are congruent to {1, 13} mod 14.

Original entry on oeis.org

1, 13, 15, 27, 29, 41, 43, 55, 57, 69, 71, 83, 85, 97, 99, 111, 113, 125, 127, 139, 141, 153, 155, 167, 169, 181, 183, 195, 197, 209, 211, 223, 225, 237, 239, 251, 253, 265, 267, 279, 281, 293, 295, 307, 309, 321, 323, 335, 337, 349, 351, 363, 365, 377, 379
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Comments

If 14k+1 is a perfect square..(0,12,16,52,60,120..) then the square root of 14k+1 = a(n) - Gary Detlefs, Feb 22 2010
More generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1==0 (mod h); in our case, a(n)^2-1==0 (mod 14). Also a(n)^2-1==0 (mod 28). - Bruno Berselli, Oct 26 2010 - Nov 17 2010

Crossrefs

Programs

  • Haskell
    a113801 n = a113801_list !! (n-1)
    a113801_list = 1 : 13 : map (+ 14) a113801_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Mathematica
    LinearRecurrence[{1,1,-1},{1,13,15},60] (* or *) Select[Range[500], MemberQ[{1,13},Mod[#,14]]&] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n)=n\2*14-(-1)^n \\ Charles R Greathouse IV, Sep 15 2015

Formula

a(n) = 14*(n-1)-a(n-1), n>1. - R. J. Mathar, Jan 30 2010
From Bruno Berselli, Oct 26 2010: (Start)
a(n) = -a(-n+1) = (14*n+5*(-1)^n-7)/2.
G.f.: x*(1+12*x+x^2)/((1+x)*(1-x)^2).
a(n) = a(n-2)+14 for n>2.
a(n) = 14*A000217(n-1)+1 - 2*sum[i=1..n-1] a(i) for n>1. (End)
a(0)=1, a(1)=13, a(2)=15, a(n)=a(n-1)+a(n-2)-a(n-3). - Harvey P. Dale, May 11 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/14)*cot(Pi/14). - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((14*x - 7)*exp(x) + 5*exp(-x))/2. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/14).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/14)*cosec(Pi/14). (End)

Extensions

Corrected and extended by Giovanni Teofilatto, Nov 14 2008
Replaced the various formulas by a correct one - R. J. Mathar, Jan 30 2010

A195159 Multiples of 7 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 7, 3, 14, 5, 21, 7, 28, 9, 35, 11, 42, 13, 49, 15, 56, 17, 63, 19, 70, 21, 77, 23, 84, 25, 91, 27, 98, 29, 105, 31, 112, 33, 119, 35, 126, 37, 133, 39, 140, 41, 147, 43, 154, 45, 161, 47, 168, 49, 175, 51, 182, 53, 189, 55, 196, 57, 203, 59, 210, 61
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

This is 7*n if n is even, n if n is odd, if n>=0.
Partial sums give the generalized 11-gonal (or hendecagonal) numbers A195160.
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 11-gonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

Cf. A008589 and A005408 interleaved.
Column k=7 of A195151.
Cf. Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, this sequence, A195161.

Programs

Formula

a(2n) = 7n, a(2n+1) = 2n+1. [corrected by Omar E. Pol, Jul 26 2018]
From Bruno Berselli, Sep 14 2011: (Start)
G.f.: x*(1+7*x+x^2)/((1-x)^2*(1+x)^2).
a(n) = (5*(-1)^n+9)*n/4.
a(n) + a(n-1) = A056020(n). (End)
Multiplicative with a(2^e) = 7*2^(e-1), a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 5/2^s). - Amiram Eldar, Oct 25 2023

A082784 Characteristic function of multiples of 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

This sequence is the Euler transformation of A185017. - Jason Kimberley, Oct 14 2011

Examples

			a(14) = a(2*7) = 1; a(41) = a(5*7+6) = 0.
		

Crossrefs

Characteristic function of multiples of g: A000007 (g=0), A000012 (g=1), A059841 (g=2), A079978 (g=3), A121262 (g=4), A079998 (g=5), A079979 (g=6), this sequence (g=7). - Jason Kimberley, Oct 14 2011

Programs

Formula

a(n) = 0^(n mod 7).
a(0)=1, a(n)=0 for 1<=n<7, a(n+7)=a(n).
a(n) = 1 - (n^6 mod 7). - Paolo P. Lava, Oct 02 2006
a(n) = 1 - A109720(n); a(A008589(n)) = 1; a(A047304(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
a(n) = floor(n/7)-floor((n-1)/7). - Tani Akinari, Oct 26 2012
a(n) = C(n-1,6) mod 7. - Wesley Ivan Hurt, Oct 07 2014
From Wesley Ivan Hurt, Jul 11 2016: (Start)
G.f.: 1/(1-x^7).
a(n) = a(n-7) for n>6.
a(n) = (gcd(n,7) - 1)/6. (End)

Extensions

Wrong formula and keyword mult removed by Amiram Eldar, Oct 31 2023
Showing 1-10 of 81 results. Next