cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A001106 9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.

Original entry on oeis.org

0, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, 474, 559, 651, 750, 856, 969, 1089, 1216, 1350, 1491, 1639, 1794, 1956, 2125, 2301, 2484, 2674, 2871, 3075, 3286, 3504, 3729, 3961, 4200, 4446, 4699, 4959, 5226, 5500, 5781, 6069, 6364
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9, ... and the parallel line from 1, in the direction 1, 24, ..., in the square spiral whose vertices are the generalized 9-gonal (enneagonal) numbers A118277. Also sequence found by reading the same lines in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011
Number of ordered pairs of integers (x,y) with abs(x) < n, abs(y) < n and x+y <= n. - Reinhard Zumkeller, Jan 23 2012
Partial sums give A007584. - Omar E. Pol, Jan 15 2013

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093564 ((7, 1) Pascal, column m=2). Partial sums of A016993.

Programs

  • Haskell
    a001106 n = length [(x,y) | x <- [-n+1..n-1], y <- [-n+1..n-1], x + y <= n]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Haskell
    a001106 n = n*(7*n-5) `div` 2 -- James Spahlinger, Oct 18 2012
    
  • Mathematica
    Table[n(7n - 5)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 9}, 50] (* Harvey P. Dale, Nov 06 2011 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[9], n], {n, 0, 43}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    PolygonalNumber[9,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 19 2019 *)
  • PARI
    a(n)=n*(7*n-5)/2 \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 7, y + 7
    A001106 = aList()
    print([next(A001106) for i in range(49)]) # Peter Luschny, Aug 04 2019

Formula

a(n) = (7*n - 5)*n/2.
G.f.: x*(1+6*x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation.
a(n) = n + 7*A000217(n-1). - Floor van Lamoen, Oct 14 2005
Starting (1, 9, 24, 46, 75, ...) gives the binomial transform of (1, 8, 7, 0, 0, 0, ...). - Gary W. Adamson, Jul 22 2007
Row sums of triangle A131875 starting (1, 9, 24, 46, 75, 111, ...). A001106 = binomial transform of (1, 8, 7, 0, 0, 0, ...). - Gary W. Adamson, Jul 22 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 9. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 2*a(n-1) - a(n-2) + 7. - Mohamed Bouhamida, May 05 2010
a(n) = a(n-1) + 7*n - 6 (with a(0) = 0). - Vincenzo Librandi, Nov 12 2010
a(n) = A174738(7n). - Philippe Deléham, Mar 26 2013
a(7*a(n) + 22*n + 1) = a(7*a(n) + 22*n) + a(7*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: x*(2 + 7*x)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
a(n+2) + A000217(n) = (2*n+3)^2. - Ezhilarasu Velayutham, Mar 18 2020
Product_{n>=2} (1 - 1/a(n)) = 7/9. - Amiram Eldar, Jan 21 2021
Sum_{n>=1} 1/a(n) = A244646. - Amiram Eldar, Nov 12 2021
a(n) = A000217(3*n-2) - (n-1)^2. - Charlie Marion, Feb 27 2022
a(n) = 3*A000217(n) + 2*A005563(n-2). In general, if P(k,n) = the n-th k-gonal number, then P(m*k,n) = m*P(k,n) + (m-1)*A005563(n-2). - Charlie Marion, Feb 21 2023

A008589 Multiples of 7.

Original entry on oeis.org

0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 371, 378
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Also the Engel expansion of exp(1/7); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
Complement of A047304; A082784(a(n))=1; A109720(a(n))=0. - Reinhard Zumkeller, Nov 30 2009
The most likely sum of digits to occur when randomly tossing n pairs of (fair) six-sided dice. - Dennis P. Walsh, Jan 26 2012

Examples

			For n=2, a(2)=14 because 14 is the most likely sum (of the possible sums 4, 5, ..., 24) to occur when tossing 2 pairs of six-sided dice. - _Dennis P. Walsh_, Jan 26 2012
		

Crossrefs

Programs

Formula

(floor(a(n)/10) - 2*(a(n) mod 10)) == 0 modulo 7, see A076309. - Reinhard Zumkeller, Oct 06 2002
a(n) = 7*n = 2*a(n-1)-a(n-2); G.f.: 7*x/(x-1)^2. - Vincenzo Librandi, Dec 24 2010
E.g.f.: 7*x*exp(x). - Ilya Gutkovskiy, May 11 2016

A017089 a(n) = 8*n + 2.

Original entry on oeis.org

2, 10, 18, 26, 34, 42, 50, 58, 66, 74, 82, 90, 98, 106, 114, 122, 130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 226, 234, 242, 250, 258, 266, 274, 282, 290, 298, 306, 314, 322, 330, 338, 346, 354, 362, 370, 378, 386, 394, 402, 410, 418, 426
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 33 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 81 ).
First differences of A002939. - Aaron David Fairbanks, May 13 2014

Crossrefs

Programs

Formula

a(n) = 8*n+2; a(n) = 2*a(n-1)-a(n-2). - Vincenzo Librandi, May 28 2011
Sum_{n>=0} (-1)^n/a(n) = (Pi + 2*log(cot(Pi/8)))/(8*sqrt(2)). - Amiram Eldar, Dec 11 2021
From Elmo R. Oliveira, Mar 17 2024: (Start)
G.f.: 2*(1+3*x)/(1-x)^2.
E.g.f.: 2*exp(x)*(1 + 4*x).
a(n) = 2*A016813(n) = A008590(n) + 2. (End)

A017029 a(n) = 7*n + 4.

Original entry on oeis.org

4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277, 284, 291, 298, 305, 312, 319, 326, 333, 340, 347, 354, 361, 368, 375, 382
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.

Programs

Formula

G.f.: (3*x + 4)/(1-x)^2. - Vincenzo Librandi, Jan 27 2013
From Elmo R. Oliveira, Apr 12 2025: (Start)
E.g.f.: exp(x)*(4 + 7*x).
a(n) = 2*a(n-1) - a(n-2). (End)

Extensions

Extended by Ray Chandler, Jan 25 2005

A017017 a(n) = 7*n + 3.

Original entry on oeis.org

3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87, 94, 101, 108, 115, 122, 129, 136, 143, 150, 157, 164, 171, 178, 185, 192, 199, 206, 213, 220, 227, 234, 241, 248, 255, 262, 269, 276, 283, 290, 297, 304, 311, 318, 325, 332, 339, 346, 353, 360, 367, 374, 381
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Oct 17 2023: (Start)
G.f.: (3 + 4*x)/(1 - x)^2.
E.g.f.: (3 + 7*x)*exp(x). (End)

A004126 a(n) = n*(7*n^2 - 1)/6.

Original entry on oeis.org

0, 1, 9, 31, 74, 145, 251, 399, 596, 849, 1165, 1551, 2014, 2561, 3199, 3935, 4776, 5729, 6801, 7999, 9330, 10801, 12419, 14191, 16124, 18225, 20501, 22959, 25606, 28449, 31495, 34751, 38224, 41921, 45849, 50015, 54426, 59089, 64011
Offset: 0

Views

Author

Albert D. Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

3-dimensional analog of centered polygonal numbers.
Sum of n triangular numbers starting from T(n), where T = A000217. E.g., a(4) = T(4) + T(5) + T(6) + T(7) = 10 + 15 + 21 + 28 = 74. - Amarnath Murthy, Jul 16 2004
Also as a(n) = (1/6)*(7*n^3-n), n>0: structured heptagonal diamond numbers (vertex structure 8). Cf. A100179 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Partial sums of A069099, centered heptagonal numbers (A000566). - Jonathan Vos Post, Mar 16 2006
Binomial transform of (0, 1, 7, 7, 0, 0, 0, ...) and third partial sum of (0, 1, 6, 7, 7, 7, ...). - Gary W. Adamson, Oct 05 2015

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.

Crossrefs

Programs

Formula

a(n) = C(2*n+1,3)-C(n+1,3), n>=0. - Zerinvary Lajos, Jan 21 2007
a(n) = A000447(n) - A000292(n). - Zerinvary Lajos, Jan 21 2007
G.f.: x*(1+5*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
E.g.f.: (x/6)*(7*x^2 + 21*x + 6)*exp(x). - G. C. Greubel, Oct 05 2015
a(n) = Sum_{i = n..2*n-1} A000217(i). - Bruno Berselli, Sep 06 2017
a(n) = n^3 + Sum_{k=0..n-1} k*(k+1)/2. Alternately, a(n) = A000578(n) + A000292(n-1) for n>0. - Bruno Berselli, May 23 2018

A017005 a(n) = 7n + 2.

Original entry on oeis.org

2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100, 107, 114, 121, 128, 135, 142, 149, 156, 163, 170, 177, 184, 191, 198, 205, 212, 219, 226, 233, 240, 247, 254, 261, 268, 275, 282, 289, 296, 303, 310, 317, 324, 331, 338, 345, 352, 359, 366, 373, 380
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: (2+5*x)/(1-x)^2.
E.g.f.: exp(x)*(2 + 7*x). - Stefano Spezia, Mar 21 2021
a(n) = 2*a(n-1) - a(n-2). - Wesley Ivan Hurt, Mar 22 2021

A017053 a(n) = 7*n + 6.

Original entry on oeis.org

6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 167, 174, 181, 188, 195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279, 286, 293, 300, 307, 314, 321, 328, 335, 342, 349, 356, 363, 370, 377, 384
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Wesley Ivan Hurt, Mar 17 2023
G.f.: (6+x)/(1-x)^2. - Wesley Ivan Hurt, Dec 28 2023

A093564 (7,1) Pascal triangle.

Original entry on oeis.org

1, 7, 1, 7, 8, 1, 7, 15, 9, 1, 7, 22, 24, 10, 1, 7, 29, 46, 34, 11, 1, 7, 36, 75, 80, 45, 12, 1, 7, 43, 111, 155, 125, 57, 13, 1, 7, 50, 154, 266, 280, 182, 70, 14, 1, 7, 57, 204, 420, 546, 462, 252, 84, 15, 1, 7, 64, 261, 624, 966, 1008, 714, 336, 99, 16, 1, 7, 71, 325, 885
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(7;n,m) gives in the columns m>=1 the figurate numbers based on A016993, including the 9-gonal numbers A001106, (see the W. Lang link).
This is the seventh member, d=7, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-3, for d=1..6.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+6*z)/(1-(1+x)*z).
The SW-NE diagonals give A022097(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 6. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.

Examples

			Triangle begins
  [1];
  [7,  1];
  [7,  8,  1];
  [7, 15,  9,  1];
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch. 5, pp. 109-122.

Crossrefs

Row sums: A000079(n+2), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 6 for n=2 and 0 otherwise.
The column sequences give for m=1..9: A016993, A001106 (9-gonal), A007584, A051740, A051877, A050403, A027818, A034266, A055994.
Cf. A093565 (d=8).

Programs

  • Haskell
    a093564 n k = a093564_tabl !! n !! k
    a093564_row n = a093564_tabl !! n
    a093564_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [7, 1]
    -- Reinhard Zumkeller, Sep 01 2014
  • Maple
    N:= 20: # to get the first N rows
    T:=Matrix(N,N):
    T[1,1]:= 1:
    for m from 2 to N do
    T[m,1]:= 7:
    T[m,2..m]:= T[m-1,1..m-1] + T[m-1,2..m];
    od:
    for m from 1 to N do
    convert(T[m,1..m],list)
    od; # Robert Israel, Dec 28 2014

Formula

a(n, m)=F(7;n-m, m) for 0<= m <= n, otherwise 0, with F(7;0, 0)=1, F(7;n, 0)=7 if n>=1 and F(7;n, m):=(7*n+m)*binomial(n+m-1, m-1)/m if m>=1.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=7 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (1+6*x)/(1-x)^(m+1), m>=0.
T(n, k) = C(n, k) + 6*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(7 + 15*x + 9*x^2/2! + x^3/3!) = 7 + 22*x + 46*x^2/2! + 80*x^3/3! + 125*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

A280457 Expansion of Product_{k>=0} (1 + x^(7*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 1, 4, 5, 2, 0, 0, 0, 1, 5, 7, 3, 0, 0, 0, 1, 5, 8, 5, 1, 0, 0, 1, 6, 10, 6, 1, 0, 0, 1, 6, 12, 9, 2, 0, 0, 1, 7, 14, 11, 3, 0, 0, 1, 7, 16, 15, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 03 2017

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 mod 7.

Examples

			a(37) = 3 because we have [36, 1], [29, 8] and [22, 15].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[(1 + x^(7 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 7] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Product_{k>=0} (1 + x^(7*k+1)).
a(n) ~ exp(Pi*sqrt(n)/sqrt(21))/(2*2^(1/7)*21^(1/4)*n^(3/4)) * (1 + (13*Pi/(336*sqrt(21)) - 3*sqrt(21)/(8*Pi)) / sqrt(n)). - Ilya Gutkovskiy, Jan 03 2017, extended by Vaclav Kotesovec, Jan 24 2017
Showing 1-10 of 32 results. Next