A017089
a(n) = 8*n + 2.
Original entry on oeis.org
2, 10, 18, 26, 34, 42, 50, 58, 66, 74, 82, 90, 98, 106, 114, 122, 130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 226, 234, 242, 250, 258, 266, 274, 282, 290, 298, 306, 314, 322, 330, 338, 346, 354, 362, 370, 378, 386, 394, 402, 410, 418, 426
Offset: 0
A017029
a(n) = 7*n + 4.
Original entry on oeis.org
4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277, 284, 291, 298, 305, 312, 319, 326, 333, 340, 347, 354, 361, 368, 375, 382
Offset: 0
Cf. similar sequences with closed form (2*k-1)*n+k listed in
A269044.
-
[7*n + 4: n in [0..60]]; // Vincenzo Librandi, Jun 18 2011
-
Range[4,1000,7] (* Vladimir Joseph Stephan Orlovsky, Jun 25 2009 *)
CoefficientList[Series[(3*x + 4)/(1 - x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Jan 27 2013 *)
LinearRecurrence[{2,-1},{4,11},60] (* Harvey P. Dale, Mar 27 2025 *)
-
a(n)=7*n+4 \\ Charles R Greathouse IV, Jul 10 2016
A017017
a(n) = 7*n + 3.
Original entry on oeis.org
3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87, 94, 101, 108, 115, 122, 129, 136, 143, 150, 157, 164, 171, 178, 185, 192, 199, 206, 213, 220, 227, 234, 241, 248, 255, 262, 269, 276, 283, 290, 297, 304, 311, 318, 325, 332, 339, 346, 353, 360, 367, 374, 381
Offset: 0
A017053
a(n) = 7*n + 6.
Original entry on oeis.org
6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 167, 174, 181, 188, 195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279, 286, 293, 300, 307, 314, 321, 328, 335, 342, 349, 356, 363, 370, 377, 384
Offset: 0
-
[7*n + 6: n in [0..60]]; // Vincenzo Librandi, Jun 18 2011
-
Array[7*#+6&,100,0] (* Vladimir Joseph Stephan Orlovsky, Dec 14 2009 *)
LinearRecurrence[{2,-1},{6,13},60] (* Harvey P. Dale, Apr 13 2022 *)
-
a(n)=7*n+6 \\ Charles R Greathouse IV, Jul 10 2016
A198017
a(n) = n*(7*n + 11)/2 + 1.
Original entry on oeis.org
1, 10, 26, 49, 79, 116, 160, 211, 269, 334, 406, 485, 571, 664, 764, 871, 985, 1106, 1234, 1369, 1511, 1660, 1816, 1979, 2149, 2326, 2510, 2701, 2899, 3104, 3316, 3535, 3761, 3994, 4234, 4481, 4735, 4996, 5264, 5539, 5821, 6110, 6406, 6709, 7019, 7336, 7660, 7991
Offset: 0
Cf.
A195020 (vertices of the numerical spiral in link).
Cf.
A001106,
A022264,
A033572,
A144555,
A152760,
A158482,
A158485,
A185019,
A193053,
A195021,
A195023-
A195030,
A195320 [incomplete list].
-
[n*(7*n+11)/2+1: n in [0..47]];
-
Table[(n(7n+11))/2+1,{n,0,60}] (* or *) LinearRecurrence[{3,-3,1},{1,10,26},60] (* Harvey P. Dale, Mar 03 2013 *)
-
for(n=0, 47, print1(n*(7*n+11)/2+1", "));
A134500
a(n) = Fibonacci(7n + 2).
Original entry on oeis.org
1, 34, 987, 28657, 832040, 24157817, 701408733, 20365011074, 591286729879, 17167680177565, 498454011879264, 14472334024676221, 420196140727489673, 12200160415121876738, 354224848179261915075, 10284720757613717413913
Offset: 0
A342758
Array read by ascending antidiagonals: T(k, n) is the maximum value of the magic constant in a perimeter-magic k-gon of order n.
Original entry on oeis.org
12, 15, 23, 19, 30, 37, 22, 37, 48, 54, 26, 44, 60, 71, 74, 29, 51, 71, 88, 97, 97, 33, 58, 83, 105, 121, 128, 123, 36, 65, 94, 122, 144, 159, 162, 152, 40, 72, 106, 139, 168, 190, 202, 201, 184, 43, 79, 117, 156, 191, 221, 241, 250, 243, 219, 47, 86, 129, 173, 215, 252, 281, 299, 303, 290, 257
Offset: 3
The array begins:
k\n| 3 4 5 6 7 ...
---+---------------------
3 | 12 23 37 54 74 ...
4 | 15 30 48 71 97 ...
5 | 19 37 60 88 121 ...
6 | 22 44 71 105 144 ...
7 | 26 51 83 122 168 ...
...
- Terrel Trotter, Perimeter-Magic Polygons, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equations 11 and 13).
-
T[k_,n_]:= (n+k(n^2-2)+(Mod[k,2]-1)Mod[n,2])/2; Table[T[k+3-n,n],{k,3,13},{n,3,k}]//Flatten
A139608
a(n) = 28*n + 8.
Original entry on oeis.org
8, 36, 64, 92, 120, 148, 176, 204, 232, 260, 288, 316, 344, 372, 400, 428, 456, 484, 512, 540, 568, 596, 624, 652, 680, 708, 736, 764, 792, 820, 848, 876, 904, 932, 960, 988, 1016, 1044, 1072, 1100, 1128, 1156, 1184, 1212, 1240, 1268, 1296, 1324, 1352, 1380
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012
-
[4*(7*n + 2): n in [0..50]]; // Vincenzo Librandi, Jul 13 2011
-
Range[8, 7000, 28] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)
LinearRecurrence[{2,-1},{8,36},50] (* or *) NestList[28+#&,8,50] (* Harvey P. Dale, Dec 14 2012 *)
-
a(n)=28*n+8 \\ Charles R Greathouse IV, Oct 05 2011
A153384
Numbers n such that 24*n+1 is not prime.
Original entry on oeis.org
0, 1, 2, 5, 6, 7, 9, 11, 12, 15, 16, 20, 21, 22, 23, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 49, 51, 53, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 68, 70, 71, 72, 76, 77, 79, 80, 81, 82, 85, 86, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102
Offset: 1
Triangle begins:
*;
*,1;
*,*,2;
*,*,*,*;
*,*,*,*,5;
*,*,*,*,*,7;
*,*,*,*,*,*,*;
*,*,*,*,*,*,*,12;
*,*,*,*,*,*,*,*,15;
*,*,*,*,*,*,*,*,*,*;
*,*,*,*,*,*,*,*,*,*,22; etc.
where * marks the non-integer values of (2*h*k + k + h)/12 with h >= k >= 1. - _Vincenzo Librandi_, Jan 14 2013
A163652
Triangle read by rows where T(n,m)=2*m*n + m + n + 6.
Original entry on oeis.org
10, 13, 18, 16, 23, 30, 19, 28, 37, 46, 22, 33, 44, 55, 66, 25, 38, 51, 64, 77, 90, 28, 43, 58, 73, 88, 103, 118, 31, 48, 65, 82, 99, 116, 133, 150, 34, 53, 72, 91, 110, 129, 148, 167, 186, 37, 58, 79, 100, 121, 142, 163, 184, 205, 226, 40, 63, 86, 109, 132, 155, 178
Offset: 1
Triangle begins:
10;
13, 18;
16, 23, 30;
19, 28, 37, 46;
22, 33, 44, 55, 66;
25, 38, 51, 64, 77, 90;
28, 43, 58, 73, 88, 103, 118;
31, 48, 65, 82, 99, 116, 133, 150;
34, 53, 72, 91, 110, 129, 148, 167, 186;
37, 58, 79, 100, 121, 142, 163, 184, 205, 226;
40, 63, 86, 109, 132, 155, 178, 201, 224, 247, 270;
etc.
-
[2*n*k + n + k + 6: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:=2 n*k + n + k + 6; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
Showing 1-10 of 20 results.
Comments