cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A017005 a(n) = 7n + 2.

Original entry on oeis.org

2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100, 107, 114, 121, 128, 135, 142, 149, 156, 163, 170, 177, 184, 191, 198, 205, 212, 219, 226, 233, 240, 247, 254, 261, 268, 275, 282, 289, 296, 303, 310, 317, 324, 331, 338, 345, 352, 359, 366, 373, 380
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: (2+5*x)/(1-x)^2.
E.g.f.: exp(x)*(2 + 7*x). - Stefano Spezia, Mar 21 2021
a(n) = 2*a(n-1) - a(n-2). - Wesley Ivan Hurt, Mar 22 2021

A135503 a(n) = n*(n^2 - 1)/2.

Original entry on oeis.org

0, 0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, 1092, 1365, 1680, 2040, 2448, 2907, 3420, 3990, 4620, 5313, 6072, 6900, 7800, 8775, 9828, 10962, 12180, 13485, 14880, 16368, 17952, 19635, 21420, 23310, 25308, 27417, 29640, 31980, 34440
Offset: 0

Views

Author

Cino Hilliard, Feb 09 2008

Keywords

Comments

Previous name was: Integer values of sqrt(b) solving sqrt(d) + sqrt(b) = sqrt(c) with d^2 + b = c.
Squaring the first equation and setting the result equal to the second, we need d + b + 2*sqrt(d*b) = d^2+b -> d + 2*sqrt(d*b) = d^2 -> d^2 - d = 2*sqrt(d*b)
-> d^2*(d-1)^2 = 4*d*b -> b = d*(d-1)^2/4 -> sqrt(b) = (d-1)*sqrt(d)/2. Setting d = (n+1)^2 yields sqrt(b) = A027480(n).
This is the case k = 2 for FLTR, Fermat's Last Theorem with rational exponents 1/k: Consider x + y = x + y. Then (x^k)^(1/k) + (y^k)^(1/k) = ((x+y)^k)^(1/k).
For k > 2, there are infinitely many solutions to d^(1/k) + b^(1/k) = c^(1/k). E.g., 8^(1/3) + 27^(1/3) = 125^(1/3) at k = 3. However, in conjunction with d^2 + b = c, I could not find any nontrivial solutions.
A shifted version of A027480. - R. J. Mathar, Apr 07 2009
For n > 2, a(n) is the maximum value of the magic constant in a perimeter-magic n-gon of order n (see A342758). - Stefano Spezia, Mar 21 2021
a(n) is equal to the total number of P_3 edge-disjoint subgraphs of the complete graph on n vertices. - Samuel J. Bevins, May 09 2023

Examples

			For d = 9, b = 144, c = 225, 9^(1/2) + 144^(1/2) = 225^(1/2) and 9^2 + 144 = 225. So b^(1/2) = 12 is the 4th entry in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Array[# (#^2 - 1)/2 &, 42, 0] (* Michael De Vlieger, Feb 20 2018 *)
  • PARI
    flt2(n,p) = { local(a,b); for(a=0,n, b = (a^3-a)/2; print1(b", ") ) }

Formula

a(n) = 3*A000292(n-1).
From R. J. Mathar Feb 20 2008: (Start)
O.g.f.: 3*x^2/(-1+x)^4.
a(n) = n*(n^2 - 1)/2 = A007531(n+1)/2. (End)
G.f.: 3*x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + (k+1)/(k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
a(n) = A006003(n+1) - A000326(n+1). - J. M. Bergot, Dec 04 2014
E.g.f.: (1/2)* x^2 *(3 + x)*exp(x). - G. C. Greubel, Oct 15 2016
From Miquel Cerda, Dec 25 2016: (Start)
a(n) = A000578(n) - A006003(n).
a(n) = A004188(n) - A000578(n).
a(n) = A007588(n) - A004188(n). (End)
a(n) = A002411(n) - A000217(n). - Justin Gaetano, Feb 20 2018
From Amiram Eldar, Jan 09 2021: (Start)
Sum_{n>=2} 1/a(n) = 1/2.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2) - 5/2. (End)

Extensions

Edited by R. J. Mathar, Apr 21 2009
New name using R. J. Mathar's formula, Joerg Arndt, Dec 05 2014

A342819 Table read by ascending antidiagonals: T(k, n) is the number of distinct values of the magic constant in a perimeter-magic k-gon of order n.

Original entry on oeis.org

4, 4, 7, 6, 9, 10, 6, 11, 12, 13, 8, 13, 16, 17, 16, 8, 15, 18, 21, 20, 19, 10, 17, 22, 25, 26, 25, 22, 10, 19, 24, 29, 30, 31, 28, 25, 12, 21, 28, 33, 36, 37, 36, 33, 28, 12, 23, 30, 37, 40, 43, 42, 41, 36, 31, 14, 25, 34, 41, 46, 49, 50, 49, 46, 41, 34, 14, 27, 36, 45, 50, 55, 56, 57, 54, 51, 44, 37
Offset: 3

Views

Author

Stefano Spezia, Mar 22 2021

Keywords

Examples

			The table begins:
k\n|  3   4   5   6   7 ...
---+-------------------
3  |  4   7  10  13  16 ...
4  |  4   9  12  17  20 ...
5  |  6  11  16  21  26 ...
6  |  6  13  18  25  30 ...
7  |  8  15  22  29  36 ...
...
		

Crossrefs

Cf. A005408 (n = 4), A016813 (n = 6), A016921 (n = 8), A017077 (n = 10), A146951 (n = 7), A238290 (n = 9), A342757, A342758.

Programs

  • Mathematica
    T[k_,n_]:=k(n-2)+(Mod[k,2]-1)Mod[n,2]+1;Table[T[k+3-n,n],{k,3,14},{n,3,k}]//Flatten

Formula

O.g.f.: (1 - y + 2*x*(y^2 + y - 1) + x^2*(4*y^2 + y - 3))/((1 - x)^2*(1 + x)*(1 - y)^2*(1 + y)).
E.g.f.: (1 + x*(y - 2))*cosh(x + y) + cosh(y)*sinh(x) + x*(y - 2)*sinh(x + y).
T(k, n) = k*(n - 2) + ((k mod 2) - 1)*(n mod 2) + 1.
T(k, n) = A342758(k, n) - A342757(k, n) + 1.

A342757 Array read by ascending antidiagonals: T(k, n) is the minimum value of the magic constant in a perimeter-magic k-gon of order n.

Original entry on oeis.org

9, 12, 17, 14, 22, 28, 17, 27, 37, 42, 19, 32, 45, 55, 59, 22, 37, 54, 68, 78, 79, 24, 42, 62, 81, 96, 104, 102, 27, 47, 71, 94, 115, 129, 135, 128, 29, 52, 79, 107, 133, 154, 167, 169, 157, 32, 57, 88, 120, 152, 179, 200, 210, 208, 189, 34, 62, 96, 133, 170, 204, 232, 251, 258, 250, 224
Offset: 3

Views

Author

Stefano Spezia, Mar 21 2021

Keywords

Examples

			The array begins:
k\n|  3   4   5   6    7 ...
---+------------------------
3  |  9  17  28  42   59 ...
4  | 12  22  37  55   78 ...
5  | 14  27  45  68   96 ...
6  | 17  32  54  81  115 ...
7  | 19  37  62  94  133 ...
...
		

Crossrefs

Cf. A016873 (n = 4), A285009 (k = 3), A342719, A342758 (maximum).

Programs

  • Mathematica
    T[k_,n_]:= ((1-Mod[k,2])Mod[n,2]+k*(n^2-2*n+2)+n)/2; Table[T[k+3-n,n],{k,3,13},{n,3,k}]//Flatten

Formula

G.f.: (x^2*(-3*y^3 + 2*y - 1) - x*(2*y^3 + y^2 - 2*y + 1) + (y - 1)*y)/((x - 1)^2*(x + 1)*(y - 1)^3*(y + 1)).
T(k, n) = (n^2/2 - n + 1)*k + n/2 if n is even or both n and k are odd.
T(k, n) = (n^2/2 - n + 1)*k + (n + 1)/2 if n is odd and k is even.
T(k, n) = ((1 - (k mod 2))*(n mod 2) + k*(n^2 - 2*n + 2) + n)/2.

A342719 Array read by ascending antidiagonals: T(k, n) is the sum of the consecutive positive integers from 1 to (n - 1)*k placed along the perimeter of an n-th order perimeter-magic k-gon.

Original entry on oeis.org

21, 36, 45, 55, 78, 78, 78, 120, 136, 120, 105, 171, 210, 210, 171, 136, 231, 300, 325, 300, 231, 171, 300, 406, 465, 465, 406, 300, 210, 378, 528, 630, 666, 630, 528, 378, 253, 465, 666, 820, 903, 903, 820, 666, 465, 300, 561, 820, 1035, 1176, 1225, 1176, 1035, 820, 561
Offset: 3

Views

Author

Stefano Spezia, Mar 19 2021

Keywords

Examples

			The array begins:
k\n|   3    4    5    6    7 ...
---+------------------------
3  |  21   45   78  120  171 ...
4  |  36   78  136  210  300 ...
5  |  55  120  210  325  465 ...
6  |  78  171  300  465  666 ...
7  | 105  231  406  630  903 ...
...
		

Crossrefs

Cf. A014105 (n = 3), A033585 (n = 5), A037270 (1st superdiagonal), A081266 (n = 4), A083374 (1st subdiagonal), A110450 (diagonal), A144312 (n = 6), A144314 (n = 7), A342757, A342758.

Programs

  • Mathematica
    T[k_,n_]:=(n-1)k((n-1)k+1)/2; Table[T[k+3-n,n],{k,3,12},{n,3,k}]//Flatten

Formula

O.g.f.: (x^2 - 3*x^2*y + x*y^2 + 3*x^2*y^2)/((1 - x)^3*(1 - y)^3).
E.g.f.: exp(x+y)*x*(x - x*y + y^2 + x*y^2)/2.
T(k, n) = (n - 1)*k*((n - 1)*k + 1)/2.
Showing 1-5 of 5 results.