A144739
7-factorial numbers A114799(7*n+3): Partial products of A017017(k) = 7*k+3, a(0) = 1.
Original entry on oeis.org
1, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 1990648483200, 131382799891200, 9590944392057600, 767275551364608000, 66752972968720896000, 6274779459059764224000, 633752725365036186624000, 68445294339423908155392000, 7871208849033749437870080000
Offset: 0
a(0)=1, a(1)=3, a(2)=3*10=30, a(3)=3*10*17=510, a(4)=3*10*17*24=12240, ...
Cf.
A114799,
A001710,
A001147,
A032031,
A008545,
A047056,
A011781,
A045754,
A084947,
A144827,
A147585,
A049209,
A051188.
-
List([0..20], n-> Product([0..n-1], k-> 7*k+3) ); # G. C. Greubel, Aug 19 2019
-
[ 1 ] cat [ &*[ (7*k+3): k in [0..n] ]: n in [0..20] ]; // Klaus Brockhaus, Nov 10 2008
-
a:= n-> product(7*j+3, j=0..n-1); seq(a(n), n=0..20); # G. C. Greubel, Aug 19 2019
-
Table[7^n*Pochhammer[3/7, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
-
a(n)=prod(i=1,n,7*i-4) \\ Charles R Greathouse IV, Jul 02 2013
-
[product(7*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A017089
a(n) = 8*n + 2.
Original entry on oeis.org
2, 10, 18, 26, 34, 42, 50, 58, 66, 74, 82, 90, 98, 106, 114, 122, 130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 226, 234, 242, 250, 258, 266, 274, 282, 290, 298, 306, 314, 322, 330, 338, 346, 354, 362, 370, 378, 386, 394, 402, 410, 418, 426
Offset: 0
A017029
a(n) = 7*n + 4.
Original entry on oeis.org
4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277, 284, 291, 298, 305, 312, 319, 326, 333, 340, 347, 354, 361, 368, 375, 382
Offset: 0
Cf. similar sequences with closed form (2*k-1)*n+k listed in
A269044.
-
[7*n + 4: n in [0..60]]; // Vincenzo Librandi, Jun 18 2011
-
Range[4,1000,7] (* Vladimir Joseph Stephan Orlovsky, Jun 25 2009 *)
CoefficientList[Series[(3*x + 4)/(1 - x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Jan 27 2013 *)
LinearRecurrence[{2,-1},{4,11},60] (* Harvey P. Dale, Mar 27 2025 *)
-
a(n)=7*n+4 \\ Charles R Greathouse IV, Jul 10 2016
A017053
a(n) = 7*n + 6.
Original entry on oeis.org
6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 167, 174, 181, 188, 195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279, 286, 293, 300, 307, 314, 321, 328, 335, 342, 349, 356, 363, 370, 377, 384
Offset: 0
-
[7*n + 6: n in [0..60]]; // Vincenzo Librandi, Jun 18 2011
-
Array[7*#+6&,100,0] (* Vladimir Joseph Stephan Orlovsky, Dec 14 2009 *)
LinearRecurrence[{2,-1},{6,13},60] (* Harvey P. Dale, Apr 13 2022 *)
-
a(n)=7*n+6 \\ Charles R Greathouse IV, Jul 10 2016
A083487
Triangle read by rows: T(n,k) = 2*n*k + n + k (1 <= k <= n).
Original entry on oeis.org
4, 7, 12, 10, 17, 24, 13, 22, 31, 40, 16, 27, 38, 49, 60, 19, 32, 45, 58, 71, 84, 22, 37, 52, 67, 82, 97, 112, 25, 42, 59, 76, 93, 110, 127, 144, 28, 47, 66, 85, 104, 123, 142, 161, 180, 31, 52, 73, 94, 115, 136, 157, 178, 199, 220, 34, 57, 80, 103, 126, 149, 172, 195, 218, 241, 264
Offset: 1
Artemario Tadeu Medeiros da Silva (artemario(AT)uol.com.br), Jun 09 2003
Triangle begins:
4;
7, 12;
10, 17, 24;
13, 22, 31, 40;
16, 27, 38, 49, 60;
19, 32, 45, 58, 71, 84;
22, 37, 52, 67, 82, 97, 112;
25, 42, 59, 76, 93, 110, 127, 144;
28, 47, 66, 85, 104, 123, 142, 161, 180;
-
[(2*n*k + n + k): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Jun 01 2014
-
T[n_,k_]:= 2 n k + n + k; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Jun 01 2014 *)
-
def T(r, c): return 2*r*c + r + c
a = [T(r, c) for r in range(12) for c in range(1, r+1)]
print(a) # Michael S. Branicky, Sep 07 2022
-
flatten([[2*n*k +n +k for k in range(1,n+1)] for n in range(1,14)]) # G. C. Greubel, Oct 17 2023
A134501
a(n) = Fibonacci(7n + 3).
Original entry on oeis.org
2, 55, 1597, 46368, 1346269, 39088169, 1134903170, 32951280099, 956722026041, 27777890035288, 806515533049393, 23416728348467685, 679891637638612258, 19740274219868223167, 573147844013817084101, 16641027750620563662096
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497 -
A134504.
A047318
Numbers that are congruent to {0, 1, 2, 4, 5, 6} mod 7.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 83
Offset: 1
-
[n+Floor((n-4)/6) : n in [1..100]]; // Wesley Ivan Hurt, Sep 10 2015
-
[n : n in [0..140] | n mod 7 in [0, 1, 2, 4, 5, 6]]; // Vincenzo Librandi, Sep 11 2015
-
for n from 0 to 200 do if n mod 7 <> 3 then printf(`%d,`,n) fi: od:
A047318:=n->n+floor((n-4)/6): seq(A047318(n), n=1..100); # Wesley Ivan Hurt, Sep 10 2015
-
Table[n+Floor[(n-4)/6], {n,100}] (* Wesley Ivan Hurt, Sep 10 2015 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 4, 5, 6, 7}, 100] (* Vincenzo Librandi, Sep 11 2015 *)
DeleteCases[Range[0,100],?(Mod[#,7]==3&)] (* _Harvey P. Dale, May 07 2016 *)
A163672
Triangle T(n,m) = 2mn + m + n + 7 read by rows.
Original entry on oeis.org
11, 14, 19, 17, 24, 31, 20, 29, 38, 47, 23, 34, 45, 56, 67, 26, 39, 52, 65, 78, 91, 29, 44, 59, 74, 89, 104, 119, 32, 49, 66, 83, 100, 117, 134, 151, 35, 54, 73, 92, 111, 130, 149, 168, 187, 38, 59, 80, 101, 122, 143, 164, 185, 206, 227, 41, 64, 87, 110, 133, 156, 179
Offset: 1
Triangle begins:
11;
14, 19;
17, 24, 31;
20, 29, 38, 47;
23, 34, 45, 56, 67;
26, 39, 52, 65, 78, 91;
29, 44, 59, 74, 89, 104, 119;
32, 49, 66, 83, 100, 117, 134, 151;
-
[2*n*k + n + k + 7: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:=2 n*k + n + k + 7; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
-
for(n=1,10, for(m=1,n, print1(2*m*n + m + n + 7, ", "))) \\ G. C. Greubel, Aug 02 2017
A017018
a(n) = (7*n + 3)^2.
Original entry on oeis.org
9, 100, 289, 576, 961, 1444, 2025, 2704, 3481, 4356, 5329, 6400, 7569, 8836, 10201, 11664, 13225, 14884, 16641, 18496, 20449, 22500, 24649, 26896, 29241, 31684, 34225, 36864, 39601, 42436, 45369, 48400
Offset: 0
-
[(7*n+3)^2: n in [0..35]]; // Vincenzo Librandi, Jul 14 2011
-
(7*Range[0,40]+3)^2 (* or *) LinearRecurrence[{3,-3,1},{9,100,289},40] (* Harvey P. Dale, Jul 19 2014 *)
-
a(n)=(7*n+3)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
[(7*n+3)^2 for n in range(40)] # G. C. Greubel, Oct 17 2023
Showing 1-10 of 23 results.
Comments