cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A179986 Second 9-gonal (or nonagonal) numbers: a(n) = n*(7*n+5)/2.

Original entry on oeis.org

0, 6, 19, 39, 66, 100, 141, 189, 244, 306, 375, 451, 534, 624, 721, 825, 936, 1054, 1179, 1311, 1450, 1596, 1749, 1909, 2076, 2250, 2431, 2619, 2814, 3016, 3225, 3441, 3664, 3894, 4131, 4375, 4626, 4884, 5149, 5421, 5700, 5986, 6279, 6579, 6886
Offset: 0

Views

Author

Bruno Berselli, Jan 13 2011

Keywords

Comments

This sequence is a bisection of A118277 (even part).
Sequence found by reading the line from 0, in the direction 0, 19... and the line from 6, in the direction 6, 39,..., in the square spiral whose vertices are the generalized 9-gonal numbers A118277. - Omar E. Pol, Jul 24 2012
The early part of this sequence is a strikingly close approximation to the early part of A100752. - Peter Munn, Nov 14 2019

Crossrefs

Cf. second k-gonal numbers: A005449 (k=5), A014105 (k=6), A147875 (k=7), A045944 (k=8), this sequence (k=9), A033954 (k=10), A062728 (k=11), A135705 (k=12).

Programs

Formula

G.f.: x*(6 + x)/(1 - x)^3.
a(n) = Sum_{i=0..(n-1)} A017053(i) for n>0.
a(-n) = A001106(n).
Sum_{i=0..n} (a(n)+i)^2 = ( Sum_{i=(n+1)..2*n} (a(n)+i)^2 ) + 21*A000217(n)^2 for n>0.
a(n) = a(n-1)+7*n-1 for n>0, with a(0)=0. - Vincenzo Librandi, Feb 05 2011
a(0)=0, a(1)=6, a(2)=19; for n>2, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Aug 19 2011
a(n) = A174738(7n+5). - Philippe Deléham, Mar 26 2013
a(n) = A001477(n) + 2*A000290(n) + 3*A000217(n). - J. M. Bergot, Apr 25 2014
a(n) = A055998(4*n) - A055998(3*n). - Bruno Berselli, Sep 23 2016
E.g.f.: (x/2)*(12 + 7*x)*exp(x). - G. C. Greubel, Aug 19 2017

A134504 a(n) = Fibonacci(7n + 6).

Original entry on oeis.org

8, 233, 6765, 196418, 5702887, 165580141, 4807526976, 139583862445, 4052739537881, 117669030460994, 3416454622906707, 99194853094755497, 2880067194370816120, 83621143489848422977, 2427893228399975082453
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: (-8-x) / (-1 + 29*x + x^2). - R. J. Mathar, Jul 04 2011
a(n) = A000045(A017053(n)). - Michel Marcus, Nov 08 2013
a(n) = 29*a(n-1) + a(n-2). - Wesley Ivan Hurt, Mar 15 2023

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A155724 Triangle read by rows: T(n, k) = 2*n*k + n + k - 4.

Original entry on oeis.org

0, 3, 8, 6, 13, 20, 9, 18, 27, 36, 12, 23, 34, 45, 56, 15, 28, 41, 54, 67, 80, 18, 33, 48, 63, 78, 93, 108, 21, 38, 55, 72, 89, 106, 123, 140, 24, 43, 62, 81, 100, 119, 138, 157, 176, 27, 48, 69, 90, 111, 132, 153, 174, 195, 216, 30, 53, 76, 99, 122, 145, 168, 191, 214, 237, 260
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2009

Keywords

Examples

			Triangle begins:
   0;
   3,  8;
   6, 13, 20;
   9, 18, 27, 36;
  12, 23, 34, 45,  56;
  15, 28, 41, 54,  67,  80;
  18, 33, 48, 63,  78,  93, 108;
  21, 38, 55, 72,  89, 106, 123, 140;
  24, 43, 62, 81, 100, 119, 138, 157, 176;
  27, 48, 69, 90, 111, 132, 153, 174, 195, 216;
		

Crossrefs

All terms are in A155723.
Cf. A162261 (row sums).
Columns k: A008585 (k=1), A016885 (k=2), A017053 (k=3), 9*A020705 (k=4).
Diagonals include: A139570, A181510, A271625.

Programs

  • Magma
    /* Triangle: */ [[2*m*n+m+n-4: m in [1..n]]: n in [1..10]]; // Bruno Berselli, Aug 31 2012
    
  • Mathematica
    Flatten[Table[2 n m + m + n - 4, {n, 10}, {m, n}]] (* Vincenzo Librandi, Mar 01 2012 *)
  • Python
    def A155724(n,k): return 2*n*k+n+k-4
    print(flatten([[A155724(n,k) for k in range(1,n+1)] for n in range(1,16)])) # G. C. Greubel, Jan 21 2025

Formula

T(n, k) = A154685(n, k) - 8. - L. Edson Jeffery, Oct 12 2012
2*T(n, k) + 9 = (2*k+1)*(2*n+1). - Vincenzo Librandi, Nov 18 2012
From G. C. Greubel, Jan 21 2025: (Start)
T(2*n-1, n) = 4*n^2 + n - 5 (main diagonal).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1/4)*( 4*(-1)^(n+1)*n^2 + 2*(2-3*(-1)^n)*n - 7*(1-(-1)^n)).
G.f.: x*y*(3*x + 3*y - 4*x*y)/((1-x)*(1-y))^2. (End)

Extensions

Edited by N. J. A. Sloane, Jun 23 2010

A155704 Triangle read by rows where T(m,n)=2*m*n + m + n + 10.

Original entry on oeis.org

14, 17, 22, 20, 27, 34, 23, 32, 41, 50, 26, 37, 48, 59, 70, 29, 42, 55, 68, 81, 94, 32, 47, 62, 77, 92, 107, 122, 35, 52, 69, 86, 103, 120, 137, 154, 38, 57, 76, 95, 114, 133, 152, 171, 190, 41, 62, 83, 104, 125, 146, 167, 188, 209, 230, 44, 67, 90, 113, 136, 159, 182
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2009

Keywords

Comments

The numbers 2*T(m,n)-19 = (2*m+1)*(2*n+1) are not prime.
First column: A016789, second column: A016873, third column: A017053, fourth column: A017221. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
14;
17, 22;
20, 27, 34;
23, 32, 41, 50;
26, 37, 48, 59, 70;
29, 42, 55, 68, 81, 94;
32, 47, 62, 77, 92, 107, 122;
35, 52, 69, 86, 103, 120, 137, 154;
38, 57, 76, 95, 114, 133, 152, 171, 190;
41, 62, 83, 104, 125, 146, 167, 188, 209, 230;
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k + 10: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k +  10; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)

A001526 a(n) = (7*n+1)*(7*n+6).

Original entry on oeis.org

6, 104, 300, 594, 986, 1476, 2064, 2750, 3534, 4416, 5396, 6474, 7650, 8924, 10296, 11766, 13334, 15000, 16764, 18626, 20586, 22644, 24800, 27054, 29406, 31856, 34404, 37050, 39794, 42636, 45576, 48614, 51750, 54984, 58316, 61746, 65274, 68900, 72624, 76446
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 98*n + a(n-1) with a(0)=6. - Vincenzo Librandi, Nov 12 2010
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A016993(n)*A017053(n).
Sum_{n>=0} 1/a(n) = cot(Pi/7)*Pi/35 = 0.186388....
Product_{n>=0} (1 - 1/a(n)) = cosec(Pi/7)*cos(sqrt(29)*Pi/14).
Product_{n>=0} (1 + 1/a(n)) = cosec(Pi/7)*cos(sqrt(3/7)*Pi/2). (End)
G.f.: -2*(3+43*x+3*x^2)/(x-1)^3. - R. J. Mathar, Apr 23 2024
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: exp(x)*(6 + 49*x*(2 + x)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A017054 a(n) = (7*n + 6)^2.

Original entry on oeis.org

36, 169, 400, 729, 1156, 1681, 2304, 3025, 3844, 4761, 5776, 6889, 8100, 9409, 10816, 12321, 13924, 15625, 17424, 19321, 21316, 23409, 25600, 27889, 30276, 32761, 35344, 38025, 40804, 43681, 46656
Offset: 0

Views

Author

Keywords

Comments

If Y is a fixed 2-subset of a (7n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007

Crossrefs

Cf. A017053 (7*n+6).

Programs

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=36, a(1)=169, a(2)=400. - Harvey P. Dale, Apr 28 2016
Sum_{n>=0} 1/a(n) = psi'(6/7)/49 = 0.04223032499681527770... - R. J. Mathar, May 07 2024
G.f.: -(36+61*x+x^2)/(x-1)^3 . - R. J. Mathar, May 07 2024

A017055 a(n) = (7*n + 6)^3.

Original entry on oeis.org

216, 2197, 8000, 19683, 39304, 68921, 110592, 166375, 238328, 328509, 438976, 571787, 729000, 912673, 1124864, 1367631, 1643032, 1953125, 2299968, 2685619, 3112136, 3581577, 4096000, 4657463, 5268024
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A017053 (7*n+6).

Programs

  • Magma
    [(7*n+6)^3: n in [0..40]]; // Vincenzo Librandi, Jul 10 2011
  • Mathematica
    (7*Range[0,30]+6)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{216,2197,8000,19683},30] (* Harvey P. Dale, Mar 06 2019 *)

Formula

G.f.: ( 216 + 1333*x + 508*x^2 + x^3 ) / (x-1)^4. - R. J. Mathar, Aug 01 2014

A017056 a(n) = (7*n + 6)^4.

Original entry on oeis.org

1296, 28561, 160000, 531441, 1336336, 2825761, 5308416, 9150625, 14776336, 22667121, 33362176, 47458321, 65610000, 88529281, 116985856, 151807041, 193877776, 244140625, 303595776, 373301041
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A017053 (7*n+6).

Programs

Formula

G.f.: -(1296 + 22081*x + 30155*x^2 + 4091*x^3 + x^4)/(x-1)^5. - R. J. Mathar, Jul 14 2016

A017057 a(n) = (7*n + 6)^5.

Original entry on oeis.org

7776, 371293, 3200000, 14348907, 45435424, 115856201, 254803968, 503284375, 916132832, 1564031349, 2535525376, 3939040643, 5904900000, 8587340257, 12166529024, 16850581551, 22877577568, 30517578125
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A017053 (7*n+6).

Programs

  • Magma
    [(7*n+6)^5: n in [0..40]]; // Vincenzo Librandi, Jul 10 2011
  • Mathematica
    (7*Range[0,20]+6)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{7776,371293,3200000,14348907,45435424,115856201},20] (* Harvey P. Dale, Dec 20 2016 *)

Formula

G.f.: (x^5 + 32762*x^4 + 562782*x^3 + 1088882*x^2 + 324637*x + 7776)/(x-1)^6. [Colin Barker, Sep 17 2012]

A017058 a(n) = (7*n + 6)^6.

Original entry on oeis.org

46656, 4826809, 64000000, 387420489, 1544804416, 4750104241, 12230590464, 27680640625, 56800235584, 107918163081, 192699928576, 326940373369, 531441000000, 832972004929, 1265319018496, 1870414552161
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A017053 (7*n+6).

Programs

  • Magma
    [(7*n+6)^6: n in [0..40]]; // Vincenzo Librandi, Jul 10 2011
  • Mathematica
    (7*Range[0,20]+6)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{46656,4826809,64000000,387420489,1544804416,4750104241,12230590464},20] (* Harvey P. Dale, Sep 04 2015 *)

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(0)=46656, a(1)=4826809, a(2)=64000000, a(3)=387420489, a(4)=1544804416, a(5)=4750104241, a(6)=12230590464. - Harvey P. Dale, Sep 04 2015
Showing 1-10 of 15 results. Next