cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A062068 a(n) = d(sigma(n)), where d(k) is the number of divisors function (A000005) and sigma(k) is the sum of divisor function (A000203).

Original entry on oeis.org

1, 2, 3, 2, 4, 6, 4, 4, 2, 6, 6, 6, 4, 8, 8, 2, 6, 4, 6, 8, 6, 9, 8, 12, 2, 8, 8, 8, 8, 12, 6, 6, 10, 8, 10, 4, 4, 12, 8, 12, 8, 12, 6, 12, 8, 12, 10, 6, 4, 4, 12, 6, 8, 16, 12, 16, 10, 12, 12, 16, 4, 12, 8, 2, 12, 15, 6, 12, 12, 15, 12, 8, 4, 8, 6, 12, 12, 16, 10, 8, 3, 12, 12, 12, 12, 12
Offset: 1

Views

Author

Amarnath Murthy, Jun 13 2001

Keywords

Examples

			a(5) = d(sigma(5)) = d(6) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, DivisorSigma[1, n]], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    for(n=1,120,print(numdiv(sigma(n))))
    
  • PARI
    { for (n=1, 1000, write("b062068.txt", n, " ", numdiv(sigma(n))) ) } \\ Harry J. Smith, Jul 31 2009

Formula

a(n) = A000005(A000203(n)) = A062069(n) + A076360(n). - Amiram Eldar, Mar 16 2025

Extensions

Corrected and extended by Jason Earls, Jun 16 2001

A076361 Numbers k such that d(sigma(k)) = sigma(d(k)).

Original entry on oeis.org

1, 3, 44, 49, 66, 68, 70, 76, 99, 121, 124, 147, 153, 164, 169, 170, 171, 172, 243, 245, 268, 275, 279, 361, 363, 387, 425, 475, 507, 529, 564, 603, 620, 644, 652, 724, 775, 841, 844, 845, 873, 891, 927, 948, 961, 964, 1075, 1083, 1132, 1324, 1348, 1377
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Comments

Solutions to A076360(x) = 0.
Assuming Schinzel's hypothesis is true, the sequence is infinite. That conjecture implies that there are infinitely many primes p for which (p^2 + p + 1)/3 is prime. (E.g., p = 7, 13, 19, 31, 43, 73, 97, ...) For such p, we have d(sigma(p^2)) = d(p^2+p+1) = 4 and sigma(d(p^2)) = sigma(3) = 4, so p^2 is in the sequence. - Dean Hickerson, Jan 24 2006

Crossrefs

Programs

  • Mathematica
    d0[x_] := DivisorSigma[0, x] d1[x_] := DivisorSigma[1, x] Do[s=d0[d1[n]]-d1[d0[n]]; If[s==0, Print[n]], {n, 1, 10000}]
    Select[Range[1380],DivisorSigma[0, DivisorSigma[1, #]] == DivisorSigma[1, DivisorSigma[0, #]] &] (* Jayanta Basu, Mar 26 2013 *)
  • PARI
    is(n)=numdiv(sigma(n))==sigma(numdiv(n)) \\ Charles R Greathouse IV, Jun 25 2013

A115557 Squares in A076361.

Original entry on oeis.org

1, 49, 121, 169, 361, 529, 841, 961, 1849, 2209, 2809, 5329, 6889, 9409, 10609, 12769, 16129, 24649, 32041, 38809, 39601, 49729, 51529, 54289, 57121, 58081, 63001, 66049, 73441, 78961, 96721, 99856, 100489, 110889, 124609, 151321, 160801
Offset: 1

Views

Author

Labos Elemer, Jan 25 2006

Keywords

Comments

The commutator [sigma, tau] is zero, that is, A076360(x) = 0 and x is a square.

Examples

			The special squared prime 121 is a term because it is a square and sigma(tau(121)) = sigma(3) = 4 = tau(sigma(121)) = tau(1 + 11 + 121) = tau(133) = 4.
The least solution with composite square root is 316^2 = 99856: tau(99856) = 15, sigma(15) = 24 or sigma(99856) = 195951 = 3*7*7*31*43, tau(195951) = 24.
		

Crossrefs

Programs

  • Mathematica
    ds = DivisorSigma; Select[Range[1000]^2, ds[0, ds[1, #]] == ds[1, ds[0, #]] &] (* Giovanni Resta, Apr 29 2017 *)
  • PARI
    isok(n) = issquare(n) && (sigma(numdiv(n)) == numdiv(sigma(n))); \\ Michel Marcus, Dec 20 2013

Formula

a(n) = A115558(n)^2. - Amiram Eldar, Jan 31 2025

A115558 a(n) is the square root of A115557(n).

Original entry on oeis.org

1, 7, 11, 13, 19, 23, 29, 31, 43, 47, 53, 73, 83, 97, 103, 113, 127, 157, 179, 197, 199, 223, 227, 233, 239, 241, 251, 257, 271, 281, 311, 316, 317, 333, 353, 389, 401, 409, 419, 421, 443, 449, 461, 467, 479, 491, 503, 509, 549, 563, 587, 593, 599, 617, 641
Offset: 1

Views

Author

Labos Elemer, Jan 25 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], DivisorSigma[0, DivisorSigma[1, #^2]] == DivisorSigma[1, DivisorSigma[0, #^2]] &] (* Amiram Eldar, Jan 28 2025 *)
  • PARI
    isok(k) = numdiv(sigma(k^2)) == sigma(numdiv(k^2)); \\ Amiram Eldar, Jan 28 2025

Formula

The commutator [sigma, tau] is zero and a(n) is the square root of solutions. Both prime and composite numbers.

A115559 Nonprime terms of A115558.

Original entry on oeis.org

1, 316, 333, 549, 844, 963, 981, 1052, 1233, 1251, 1304, 1341, 1359, 1474, 1629, 1688, 1737, 1738, 1996, 2061, 2144, 2216, 2421, 2528, 2547, 2763, 2979, 3033, 3082, 3123, 3141, 3148, 3231, 3244, 3283, 3303, 3411, 3573, 3634, 3871, 3879, 3897, 3988, 4113
Offset: 1

Views

Author

Labos Elemer, Jan 25 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], !PrimeQ[#] && DivisorSigma[0, DivisorSigma[1, #^2]] == DivisorSigma[1, DivisorSigma[0, #^2]] &] (* Amiram Eldar, Jan 28 2025 *)
  • PARI
    isok(n)= !isprime(n) && (sigma(numdiv(n^2)) == numdiv(sigma(n^2))); \\ Michel Marcus, Dec 20 2013

Formula

The commutator [sigma, tau] is zero and a(n) is the square root of solutions. Moreover this square root is a nonprime number.

A115560 Twin prime pairs k-1 and k+1 such that the squares of both are present in A115557.

Original entry on oeis.org

11, 13, 29, 31, 197, 199, 239, 241, 419, 421, 659, 661, 881, 883, 1019, 1021, 1061, 1063, 1481, 1483, 1877, 1879, 3167, 3169, 3821, 3823, 4019, 4021, 4049, 4051, 4787, 4789, 6359, 6361, 7589, 7591, 9437, 9439, 13691, 13693, 14447, 14449, 14627, 14629, 16451, 16453
Offset: 1

Views

Author

Labos Elemer, Jan 25 2006

Keywords

Crossrefs

Programs

  • Mathematica
    ta={{0}};tb={{0}}; Do[s=DivisorSigma[1,DivisorSigma[0,n]]; s1=DivisorSigma[0,DivisorSigma[1,n]]; If[Equal[s-s1,0]&&IntegerQ[Sqrt[n]&&PrimeQ[Sqrt[n]]],Print[n]; ta=Append[ta,n];tb=Append[tb,Sqrt[n]]],{n,1,100000000}] ta=Delete[ta,1];tb=Delete[tb,1];ni=Intersection[tb,2+tb]; Union[ni,ni-2]
  • PARI
    isok(n) = issquare(n) && (sigma(numdiv(n)) == numdiv(sigma(n))); \\ A115557
    lista(nn) = {forprime(p=2, nn, if (isprime(p+2) && isok(p^2) && isok((p+2)^2), print1(p, ", ", p+2, ", ")););} \\ Michel Marcus, Jul 17 2019

Formula

The commutator [sigma, tau] is zero and a(n) is the square root of special prime solutions. These solutions are twin primes. Both twins are displayed.

Extensions

More terms from Amiram Eldar, Jul 17 2019

A162880 Numbers k such that tau(sigma(k)) is not equal to sigma(tau(k)).

Original entry on oeis.org

2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80
Offset: 1

Views

Author

Jaroslav Krizek, Jul 16 2009

Keywords

Comments

The complement of A076361, that is, the indices k where A076360(k) is not zero.

Examples

			a(6)= 8 is in the list because tau(sigma(8))=A062068(8)=4 whereas sigma(tau(8)) = A062069(8) = 7.
		

Crossrefs

Programs

Extensions

Edited by R. J. Mathar, Jul 21 2009
Showing 1-7 of 7 results.