cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A062069 a(n) = sigma(d(n)), where d(k) is the number of divisors function (A000005) and sigma(k) is the sum of divisors function (A000203).

Original entry on oeis.org

1, 3, 3, 4, 3, 7, 3, 7, 4, 7, 3, 12, 3, 7, 7, 6, 3, 12, 3, 12, 7, 7, 3, 15, 4, 7, 7, 12, 3, 15, 3, 12, 7, 7, 7, 13, 3, 7, 7, 15, 3, 15, 3, 12, 12, 7, 3, 18, 4, 12, 7, 12, 3, 15, 7, 15, 7, 7, 3, 28, 3, 7, 12, 8, 7, 15, 3, 12, 7, 15, 3, 28, 3, 7, 12, 12, 7, 15, 3, 18, 6, 7, 3, 28, 7, 7, 7, 15, 3
Offset: 1

Views

Author

Amarnath Murthy, Jun 13 2001

Keywords

Comments

a(1) = 1, a(p) = 3 for p = primes (A000040), a(pq) = 7 for pq = product of two distinct primes (A006881), a(pq...z) = 2^(k+1)-1 = A000225(k+1) for pq...z = product of k (k > 2) distinct primes p,q,...,z (A120944), a(p^k) = sigma(k+1) = A000203(k+1) for p^k = prime powers (A000961(n) for n > 1). Sequence {1,3,4,12} is finite sequence of numbers n such that sigma(tau(n)) = n. [Jaroslav Krizek, Jul 16 2009]
For semiprime n, a(n) is either 4 or 7. Also a(n) = d(n) + omega(n) + mu(n), the sum of three core sequences A000005, A001221 and A008683. When n is semiprime, a(n) is completely defined by the Mobius function as: a(n) = 4 + 3*mu(n). a(n) also has the fractal-like identities a(d(n)) = d(n) and a(n) = sigma(a(d(n))). - Wesley Ivan Hurt, Sep 02 2013
If n is a triprime (A014612), d(n) is 4, 6, or 8 and a(n) = sigma(d(n)) is 7, 12, or 15 respectively. Then a(n) = -d(n)^2/4 + 5*d(n) - 9. - Wesley Ivan Hurt, Sep 08 2013

Examples

			sigma(d(12)) = sigma(6) = 12.
		

Crossrefs

Programs

  • Maple
    A062069:= (n-> numtheory[sigma](numtheory[tau](n))):
    seq (A062069(n), n=1..40); # Jani Melik, Jan 25 2011
  • Mathematica
    Table[DivisorSigma[1, DivisorSigma[0, n]], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    v=[]; for(n=1,150,v=concat(v, sigma(numdiv(n)))); v
    
  • PARI
    { for (n=1, 1000, write("b062069.txt", n, " ", sigma(numdiv(n))) ) } \\ Harry J. Smith, Jul 31 2009

Formula

a(n) = A000203(A000005(n)). - Wesley Ivan Hurt, Sep 09 2013

Extensions

More terms from Jason Earls, Jun 19 2001

A073802 Number of common divisors of n and sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 6, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 3, 1, 1, 2, 2, 1, 4, 1, 4, 1, 2, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 2, 3, 1, 6, 2, 3, 1, 2, 2, 6, 1, 1, 2, 1, 1, 4, 1, 2, 2
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Comments

From Jaroslav Krizek, Feb 18 2010: (Start)
Number of divisors d of number n such that d divides sigma(n).
a(n) = A000005(n) - A173438(n).
a(n) = A000005(n) for multiply-perfect numbers (A007691). (End)

Examples

			For n = 12: a(12) = 3; sigma(12) = 28, divisors of 12: 1, 2, 3, 4, 6, 12; d divides sigma(n) for 3 divisors d: 1, 2, 4.
n=96: d(96) = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96}, d(sigma(96)) = {1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252}, CD(n, sigma(n)) = {1, 2, 3, 4, 6, 12} so a(96) = 6.
		

Crossrefs

Programs

  • Magma
    [NumberOfDivisors(GCD(SumOfDivisors(n),n)): n in [1..100]]; // Vincenzo Librandi, Oct 09 2017
  • Mathematica
    g1[x_] := Divisors[x]; g2[x_] := Divisors[DivisorSigma[1, x]]; ncd[x_] := Length[Intersection[g1[x], g2[x]]]; Table[ncd[w], {w, 1, 128}]
    Table[Length[Intersection[Divisors[n], Divisors[DivisorSigma[1, n]]]], {n, 100}] (* Vincenzo Librandi, Oct 09 2017 *)
    a[n_] := DivisorSigma[0, GCD[n, DivisorSigma[1, n]]]; Array[a, 100] (* Amiram Eldar, Nov 21 2024 *)
  • PARI
    a(n)=numdiv(gcd(sigma(n),n)) \\ Charles R Greathouse IV, Mar 09 2014
    

Formula

See program.
a(n) = A000005(A009194(n)) = tau(gcd(n,sigma(n))). [Reinhard Zumkeller, Mar 12 2010]

A037197 Numbers k such that tau(sigma(k)) = tau(k) where tau(k) is the number of divisors of k and sigma(k) their sum.

Original entry on oeis.org

1, 2, 8, 12, 32, 52, 75, 84, 90, 98, 128, 150, 156, 338, 360, 392, 525, 528, 560, 600, 722, 867, 912, 972, 1050, 1352, 1452, 1456, 1525, 1734, 1922, 2064, 2160, 2340, 2400, 2888, 2890, 3050, 3120, 3216, 3698, 3744, 3872, 4080, 4144, 4200, 4500, 4575
Offset: 1

Views

Author

Keywords

Examples

			k = 75: divisors(75) = {1, 3, 5, 15, 25, 75}, divisors(sigma(75)) = divisors(124) = {1, 2, 4, 31, 62, 124}, both 75 and sigma(75) have 6 divisors, so 75 is a term.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[0, DivisorSigma[1, n]]; s0=DivisorSigma[0, n]; If[Greater[s0, s], Print[n]], {n, 1, 1000}]
    Select[Range[4600],DivisorSigma[0,#]==DivisorSigma[0,DivisorSigma[1,#]]&] (* Harvey P. Dale, Feb 08 2025 *)
  • PARI
    is(n)=numdiv(sigma(n))==numdiv(n) \\ Charles R Greathouse IV, Feb 13 2013

Formula

Solutions to A000005(x) = A062068(x) = A000005(A000203(x)).
Conjecture: for n > 10^6, a(n) < n^2. - Benoit Cloitre, Aug 24 2002

Extensions

Offset corrected by Reinhard Zumkeller, Jun 18 2009
Name edited by Michel Marcus, Nov 12 2023

A073803 Numbers k such that the number of divisors of k is smaller than that of sigma(k).

Original entry on oeis.org

3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Examples

			k = 96: divisors(96) = {1,2,3,4,6,8,12,16,24,32,48,96}, 12 divisors; divisors(sigma(96)) = {1,2,3,4,6,7,9,12,14,18,21,28,36,42,63,84,126,252}, 18 divisors; 12 < 18, so 96 is a term.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) uses numtheory; tau(n) < tau(sigma(n)) end proc:
    select(filter, [$1..100]); # Robert Israel, Aug 03 2020
  • Mathematica
    Do[s=DivisorSigma[0, DivisorSigma[1, n]]; s0=DivisorSigma[0, n]; If[Greater[s0, s], Print[n]], {n, 1, 1000}]
    Select[Range[100],DivisorSigma[0,#]Harvey P. Dale, Sep 22 2019 *)
  • PARI
    isok(k) = {my(f = factor(k)); numdiv(f) < numdiv(sigma(f));} \\ Amiram Eldar, Mar 07 2025

Formula

Solutions to A000005(x) < A062068(x) = A000005(A000203(x)).

A076360 a(n) = d(sigma(n)) - sigma(d(n)), where d(n) is the number of divisors of n and sigma(n) is their sum.

Original entry on oeis.org

0, -1, 0, -2, 1, -1, 1, -3, -2, -1, 3, -6, 1, 1, 1, -4, 3, -8, 3, -4, -1, 2, 5, -3, -2, 1, 1, -4, 5, -3, 3, -6, 3, 1, 3, -9, 1, 5, 1, -3, 5, -3, 3, 0, -4, 5, 7, -12, 0, -8, 5, -6, 5, 1, 5, 1, 3, 5, 9, -12, 1, 5, -4, -6, 5, 0, 3, 0, 5, 0, 9, -20, 1, 1, -6, 0, 5, 1, 7, -10, -3, 5, 9, -16, 5, 5, 9, 3, 9, -16, 3, 4, 1, 8, 9, -10, 3, -6, 0, -9, 5, 1, 5, 1, -1
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    d0[x_] := DivisorSigma[0, x]
    d1[x_] := DivisorSigma[1, x]
    Table[ d0[d1[w]] - d1[d0[w]], {w, 1, 128}]
  • PARI
    a(n) = {my(f = factor(n)); numdiv(sigma(f)) - sigma(numdiv(f));} \\ Amiram Eldar, Mar 16 2025

Formula

a(n) = A000005(A000203(n)) - A000203(A000005(n)) = A062068(n) - A062069(n). - Amiram Eldar, Mar 16 2025

A073804 Numbers k such that the number of divisors of k is greater than that of sigma(k).

Original entry on oeis.org

4, 9, 16, 18, 25, 36, 48, 50, 64, 72, 80, 81, 100, 112, 144, 162, 180, 192, 196, 200, 208, 225, 240, 252, 256, 288, 289, 300, 320, 324, 336, 400, 432, 441, 448, 450, 468, 484, 512, 576, 578, 592, 624, 625, 648, 676, 700, 704, 720, 729, 768, 784, 800, 810, 832
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Examples

			k = 25: divisors(25) = {1,5,25}, 3 divisors; divisors(sigma(25)) = {1,31}, 2 divisors; 2 < 3, so 25 is a term.
k = 48: divisors(48) = {1,2,3,4,6,8,12,16,24,48}, 10 divisors; divisors(sigma(48)) = {1,2,4,31,62,124}, 6 divisors, 6 < 10 so 48 is a term.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[0, DivisorSigma[1, n]]; s0=DivisorSigma[0, n]; If[Greater[s0, s], Print[n]], {n, 1, 1000}]
    Select[Range[900],DivisorSigma[0,#]>DivisorSigma[0,DivisorSigma[1,#]]&] (* Harvey P. Dale, Jan 18 2017 *)
  • PARI
    isok(k) = {my(f = factor(k)); numdiv(f) > numdiv(sigma(f));} \\ Amiram Eldar, Mar 07 2025

Formula

Solutions to A000005(x) > A062068(x) = A000005(A000203(x)).

A115557 Squares in A076361.

Original entry on oeis.org

1, 49, 121, 169, 361, 529, 841, 961, 1849, 2209, 2809, 5329, 6889, 9409, 10609, 12769, 16129, 24649, 32041, 38809, 39601, 49729, 51529, 54289, 57121, 58081, 63001, 66049, 73441, 78961, 96721, 99856, 100489, 110889, 124609, 151321, 160801
Offset: 1

Views

Author

Labos Elemer, Jan 25 2006

Keywords

Comments

The commutator [sigma, tau] is zero, that is, A076360(x) = 0 and x is a square.

Examples

			The special squared prime 121 is a term because it is a square and sigma(tau(121)) = sigma(3) = 4 = tau(sigma(121)) = tau(1 + 11 + 121) = tau(133) = 4.
The least solution with composite square root is 316^2 = 99856: tau(99856) = 15, sigma(15) = 24 or sigma(99856) = 195951 = 3*7*7*31*43, tau(195951) = 24.
		

Crossrefs

Programs

  • Mathematica
    ds = DivisorSigma; Select[Range[1000]^2, ds[0, ds[1, #]] == ds[1, ds[0, #]] &] (* Giovanni Resta, Apr 29 2017 *)
  • PARI
    isok(n) = issquare(n) && (sigma(numdiv(n)) == numdiv(sigma(n))); \\ Michel Marcus, Dec 20 2013

Formula

a(n) = A115558(n)^2. - Amiram Eldar, Jan 31 2025

A115558 a(n) is the square root of A115557(n).

Original entry on oeis.org

1, 7, 11, 13, 19, 23, 29, 31, 43, 47, 53, 73, 83, 97, 103, 113, 127, 157, 179, 197, 199, 223, 227, 233, 239, 241, 251, 257, 271, 281, 311, 316, 317, 333, 353, 389, 401, 409, 419, 421, 443, 449, 461, 467, 479, 491, 503, 509, 549, 563, 587, 593, 599, 617, 641
Offset: 1

Views

Author

Labos Elemer, Jan 25 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], DivisorSigma[0, DivisorSigma[1, #^2]] == DivisorSigma[1, DivisorSigma[0, #^2]] &] (* Amiram Eldar, Jan 28 2025 *)
  • PARI
    isok(k) = numdiv(sigma(k^2)) == sigma(numdiv(k^2)); \\ Amiram Eldar, Jan 28 2025

Formula

The commutator [sigma, tau] is zero and a(n) is the square root of solutions. Both prime and composite numbers.

A173320 Numbers k such that tau(sigma(k)) = sopf(k).

Original entry on oeis.org

2, 3, 4, 15, 16, 42, 45, 64, 81, 84, 245, 336, 340, 342, 460, 539, 550, 580, 605, 684, 882, 1012, 1014, 1160, 1344, 1360, 1640, 1674, 1700, 1785, 1840, 1972, 2178, 2254, 2320, 2322, 2736, 3096, 3348, 3645, 4048, 4096, 4212, 4332, 4389, 4400, 4644, 4830, 5022
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

sopf(k) is the sum of the distinct primes dividing k (A008472), tau(k) is the number of divisors of k (A000005), and sigma(k) is the sum of divisor of k (A000203).

Examples

			sigma(2) = 3, tau(3) = 2 and sopf(2) = 2 sigma(2254) = 4104, tau(4104) = 32 and sopf(2254) = 32.
		

Crossrefs

Cf. A000005, A000203, A001414 (sopfr), A001222.

Programs

  • Maple
    with(numtheory): for n from 1 to 12000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)): if tau(sigma(n)) = t2 then print (n): else fi : od :
  • Mathematica
    Select[Range[2,5100],DivisorSigma[0,DivisorSigma[1,#]]==Total[ FactorInteger[ #][[All,1]]]&] (* Harvey P. Dale, May 31 2019 *)

Formula

k such that A062068(k)= A008472(k).

A115559 Nonprime terms of A115558.

Original entry on oeis.org

1, 316, 333, 549, 844, 963, 981, 1052, 1233, 1251, 1304, 1341, 1359, 1474, 1629, 1688, 1737, 1738, 1996, 2061, 2144, 2216, 2421, 2528, 2547, 2763, 2979, 3033, 3082, 3123, 3141, 3148, 3231, 3244, 3283, 3303, 3411, 3573, 3634, 3871, 3879, 3897, 3988, 4113
Offset: 1

Views

Author

Labos Elemer, Jan 25 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], !PrimeQ[#] && DivisorSigma[0, DivisorSigma[1, #^2]] == DivisorSigma[1, DivisorSigma[0, #^2]] &] (* Amiram Eldar, Jan 28 2025 *)
  • PARI
    isok(n)= !isprime(n) && (sigma(numdiv(n^2)) == numdiv(sigma(n^2))); \\ Michel Marcus, Dec 20 2013

Formula

The commutator [sigma, tau] is zero and a(n) is the square root of solutions. Moreover this square root is a nonprime number.
Showing 1-10 of 34 results. Next