cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A062068 a(n) = d(sigma(n)), where d(k) is the number of divisors function (A000005) and sigma(k) is the sum of divisor function (A000203).

Original entry on oeis.org

1, 2, 3, 2, 4, 6, 4, 4, 2, 6, 6, 6, 4, 8, 8, 2, 6, 4, 6, 8, 6, 9, 8, 12, 2, 8, 8, 8, 8, 12, 6, 6, 10, 8, 10, 4, 4, 12, 8, 12, 8, 12, 6, 12, 8, 12, 10, 6, 4, 4, 12, 6, 8, 16, 12, 16, 10, 12, 12, 16, 4, 12, 8, 2, 12, 15, 6, 12, 12, 15, 12, 8, 4, 8, 6, 12, 12, 16, 10, 8, 3, 12, 12, 12, 12, 12
Offset: 1

Views

Author

Amarnath Murthy, Jun 13 2001

Keywords

Examples

			a(5) = d(sigma(5)) = d(6) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, DivisorSigma[1, n]], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    for(n=1,120,print(numdiv(sigma(n))))
    
  • PARI
    { for (n=1, 1000, write("b062068.txt", n, " ", numdiv(sigma(n))) ) } \\ Harry J. Smith, Jul 31 2009

Formula

a(n) = A000005(A000203(n)) = A062069(n) + A076360(n). - Amiram Eldar, Mar 16 2025

Extensions

Corrected and extended by Jason Earls, Jun 16 2001

A076360 a(n) = d(sigma(n)) - sigma(d(n)), where d(n) is the number of divisors of n and sigma(n) is their sum.

Original entry on oeis.org

0, -1, 0, -2, 1, -1, 1, -3, -2, -1, 3, -6, 1, 1, 1, -4, 3, -8, 3, -4, -1, 2, 5, -3, -2, 1, 1, -4, 5, -3, 3, -6, 3, 1, 3, -9, 1, 5, 1, -3, 5, -3, 3, 0, -4, 5, 7, -12, 0, -8, 5, -6, 5, 1, 5, 1, 3, 5, 9, -12, 1, 5, -4, -6, 5, 0, 3, 0, 5, 0, 9, -20, 1, 1, -6, 0, 5, 1, 7, -10, -3, 5, 9, -16, 5, 5, 9, 3, 9, -16, 3, 4, 1, 8, 9, -10, 3, -6, 0, -9, 5, 1, 5, 1, -1
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    d0[x_] := DivisorSigma[0, x]
    d1[x_] := DivisorSigma[1, x]
    Table[ d0[d1[w]] - d1[d0[w]], {w, 1, 128}]
  • PARI
    a(n) = {my(f = factor(n)); numdiv(sigma(f)) - sigma(numdiv(f));} \\ Amiram Eldar, Mar 16 2025

Formula

a(n) = A000005(A000203(n)) - A000203(A000005(n)) = A062068(n) - A062069(n). - Amiram Eldar, Mar 16 2025

A115557 Squares in A076361.

Original entry on oeis.org

1, 49, 121, 169, 361, 529, 841, 961, 1849, 2209, 2809, 5329, 6889, 9409, 10609, 12769, 16129, 24649, 32041, 38809, 39601, 49729, 51529, 54289, 57121, 58081, 63001, 66049, 73441, 78961, 96721, 99856, 100489, 110889, 124609, 151321, 160801
Offset: 1

Views

Author

Labos Elemer, Jan 25 2006

Keywords

Comments

The commutator [sigma, tau] is zero, that is, A076360(x) = 0 and x is a square.

Examples

			The special squared prime 121 is a term because it is a square and sigma(tau(121)) = sigma(3) = 4 = tau(sigma(121)) = tau(1 + 11 + 121) = tau(133) = 4.
The least solution with composite square root is 316^2 = 99856: tau(99856) = 15, sigma(15) = 24 or sigma(99856) = 195951 = 3*7*7*31*43, tau(195951) = 24.
		

Crossrefs

Programs

  • Mathematica
    ds = DivisorSigma; Select[Range[1000]^2, ds[0, ds[1, #]] == ds[1, ds[0, #]] &] (* Giovanni Resta, Apr 29 2017 *)
  • PARI
    isok(n) = issquare(n) && (sigma(numdiv(n)) == numdiv(sigma(n))); \\ Michel Marcus, Dec 20 2013

Formula

a(n) = A115558(n)^2. - Amiram Eldar, Jan 31 2025

A115558 a(n) is the square root of A115557(n).

Original entry on oeis.org

1, 7, 11, 13, 19, 23, 29, 31, 43, 47, 53, 73, 83, 97, 103, 113, 127, 157, 179, 197, 199, 223, 227, 233, 239, 241, 251, 257, 271, 281, 311, 316, 317, 333, 353, 389, 401, 409, 419, 421, 443, 449, 461, 467, 479, 491, 503, 509, 549, 563, 587, 593, 599, 617, 641
Offset: 1

Views

Author

Labos Elemer, Jan 25 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], DivisorSigma[0, DivisorSigma[1, #^2]] == DivisorSigma[1, DivisorSigma[0, #^2]] &] (* Amiram Eldar, Jan 28 2025 *)
  • PARI
    isok(k) = numdiv(sigma(k^2)) == sigma(numdiv(k^2)); \\ Amiram Eldar, Jan 28 2025

Formula

The commutator [sigma, tau] is zero and a(n) is the square root of solutions. Both prime and composite numbers.

A115559 Nonprime terms of A115558.

Original entry on oeis.org

1, 316, 333, 549, 844, 963, 981, 1052, 1233, 1251, 1304, 1341, 1359, 1474, 1629, 1688, 1737, 1738, 1996, 2061, 2144, 2216, 2421, 2528, 2547, 2763, 2979, 3033, 3082, 3123, 3141, 3148, 3231, 3244, 3283, 3303, 3411, 3573, 3634, 3871, 3879, 3897, 3988, 4113
Offset: 1

Views

Author

Labos Elemer, Jan 25 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], !PrimeQ[#] && DivisorSigma[0, DivisorSigma[1, #^2]] == DivisorSigma[1, DivisorSigma[0, #^2]] &] (* Amiram Eldar, Jan 28 2025 *)
  • PARI
    isok(n)= !isprime(n) && (sigma(numdiv(n^2)) == numdiv(sigma(n^2))); \\ Michel Marcus, Dec 20 2013

Formula

The commutator [sigma, tau] is zero and a(n) is the square root of solutions. Moreover this square root is a nonprime number.

A115560 Twin prime pairs k-1 and k+1 such that the squares of both are present in A115557.

Original entry on oeis.org

11, 13, 29, 31, 197, 199, 239, 241, 419, 421, 659, 661, 881, 883, 1019, 1021, 1061, 1063, 1481, 1483, 1877, 1879, 3167, 3169, 3821, 3823, 4019, 4021, 4049, 4051, 4787, 4789, 6359, 6361, 7589, 7591, 9437, 9439, 13691, 13693, 14447, 14449, 14627, 14629, 16451, 16453
Offset: 1

Views

Author

Labos Elemer, Jan 25 2006

Keywords

Crossrefs

Programs

  • Mathematica
    ta={{0}};tb={{0}}; Do[s=DivisorSigma[1,DivisorSigma[0,n]]; s1=DivisorSigma[0,DivisorSigma[1,n]]; If[Equal[s-s1,0]&&IntegerQ[Sqrt[n]&&PrimeQ[Sqrt[n]]],Print[n]; ta=Append[ta,n];tb=Append[tb,Sqrt[n]]],{n,1,100000000}] ta=Delete[ta,1];tb=Delete[tb,1];ni=Intersection[tb,2+tb]; Union[ni,ni-2]
  • PARI
    isok(n) = issquare(n) && (sigma(numdiv(n)) == numdiv(sigma(n))); \\ A115557
    lista(nn) = {forprime(p=2, nn, if (isprime(p+2) && isok(p^2) && isok((p+2)^2), print1(p, ", ", p+2, ", ")););} \\ Michel Marcus, Jul 17 2019

Formula

The commutator [sigma, tau] is zero and a(n) is the square root of special prime solutions. These solutions are twin primes. Both twins are displayed.

Extensions

More terms from Amiram Eldar, Jul 17 2019

A173326 Numbers k such that phi(tau(k)) = sopf(k).

Original entry on oeis.org

4, 8, 32, 1344, 2016, 2025, 2376, 3375, 3528, 4032, 4224, 4704, 4752, 5292, 5376, 5625, 6084, 6804, 7128, 9408, 9504, 10125, 10206, 10935, 12100, 12348, 12672, 16875, 16896, 20412, 21384, 23814, 26136, 28512, 29952, 30375, 31944, 32832, 42768, 46464, 48114
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Examples

			4 is in the sequence because tau(4) = 3, phi(3) = 2 and sopf(4) = 2.
8 is in the sequence because tau(8) = 4, phi(4) = 2 and sopf(8) = 2.
		

Crossrefs

Cf. A000005 (tau), A000010 (phi), A008472 (sopf).

Programs

  • Maple
    A008472 := proc(n) add(p,p= numtheory[factorset](n)) ; end proc:
    A163109 := proc(n) numtheory[phi](numtheory[tau](n)) ; end proc:
    for n from 1 to 40000 do if A008472(n) = A163109(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Sep 02 2011
  • Mathematica
    Select[Range[2,50000],EulerPhi[DivisorSigma[0,#]]==Total[ Transpose[ FactorInteger[#]][[1]]]&] (* Harvey P. Dale, Nov 15 2013 *)

Formula

{k: A163109(k) = A008472(k)}.

Extensions

Corrected and edited by Michel Lagneau, Apr 25 2010

A193349 Sum of odd divisors of tau(n).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 6, 1, 4, 1, 4, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 6, 4, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 8, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 4, 4, 1, 1, 1, 6, 6, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Michel Lagneau, Jul 23 2011

Keywords

Examples

			a(36) = 13 because tau(36) = 9 and the sum of the 3 odd divisors  {1, 3, 9} is 13.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[DivisorSigma[0,n]], OddQ[ # ]&]], {n, 80}]
  • PARI
    a(n)=sumdiv(sigma(n,0),d,(d%2)*d);

Formula

a(n) = A000593(A000005(n)). - Reinhard Zumkeller, Jul 25 2011
From Amiram Eldar, Aug 12 2024: (Start)
a(n) = 1 if and only if n is in A036537.
a(n) = A062069(n) if and only if n is a square. (End)

A163106 a(n) = sigma(sigma(tau(n))), where tau = number of divisors and sigma = sum of divisors.

Original entry on oeis.org

1, 4, 4, 7, 4, 8, 4, 8, 7, 8, 4, 28, 4, 8, 8, 12, 4, 28, 4, 28, 8, 8, 4, 24, 7, 8, 8, 28, 4, 24, 4, 28, 8, 8, 8, 14, 4, 8, 8, 24, 4, 24, 4, 28, 28, 8, 4, 39, 7, 28, 8, 28, 4, 24, 8, 24, 8, 8, 4, 56, 4, 8, 28, 15, 8, 24, 4, 28, 8, 24, 4, 56, 4, 8, 28, 28, 8, 24, 4, 39, 12, 8, 4, 56, 8, 8, 8, 24, 4
Offset: 1

Views

Author

Jaroslav Krizek, Jul 20 2009

Keywords

Comments

Repeated application of tau (number of divisors) and sigma (sum of divisors).

Crossrefs

Programs

Formula

Extensions

More terms from R. J. Mathar, Jul 27 2009

A163375 a(n) = sigma(tau(phi(n))).

Original entry on oeis.org

1, 1, 3, 3, 4, 3, 7, 4, 7, 4, 7, 4, 12, 7, 7, 7, 6, 7, 12, 7, 12, 7, 7, 7, 12, 12, 12, 12, 12, 7, 15, 6, 12, 6, 15, 12, 13, 12, 15, 6, 15, 12, 15, 12, 15, 7, 7, 6, 15, 12, 12, 15, 12, 12, 15, 15, 13, 12, 7, 6, 28, 15, 13, 12, 18, 12, 15, 12, 12, 15, 15, 15
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2009

Keywords

Crossrefs

Programs

  • Magma
    [SumOfDivisors(NumberOfDivisors(EulerPhi(n))): n in [1..80]]; // Vincenzo Librandi, Dec 20 2016
  • Mathematica
    DivisorSigma[1, DivisorSigma[0, EulerPhi[Range[100]]]] (* G. C. Greubel, Dec 20 2016 *)
  • PARI
    vector(100, n, sigma(numdiv(eulerphi(n)))) \\ G. C. Greubel, Dec 20 2016
    

Formula

Showing 1-10 of 26 results. Next