cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A193348 Number of odd divisors of tau(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3
Offset: 1

Views

Author

Michel Lagneau, Jul 23 2011

Keywords

Examples

			a(36) = 3 because tau(36) = 9 and the 3 odd divisors are {1, 3, 9}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{d = Divisors[DivisorSigma[0,n]]}, Count[OddQ[d], True]]; Table[a[n], {n, 80}]
  • PARI
    a(n)=sumdiv(sigma(n,0),d,d%2);
    
  • PARI
    a(n)=n=numdiv(n);numdiv(n>>valuation(n,2)) \\ Charles R Greathouse IV, Jul 30 2011

Formula

a(n) = A001227(A000005(n)). - Reinhard Zumkeller, Jul 25 2011
From Amiram Eldar, Aug 12 2024: (Start)
a(n) = 1 if and only if n is in A036537.
a(n) = A010553(n) if and only if n is a square. (End)

A193350 Sum of even divisors of tau(n).

Original entry on oeis.org

0, 2, 2, 0, 2, 6, 2, 6, 0, 6, 2, 8, 2, 6, 6, 0, 2, 8, 2, 8, 6, 6, 2, 14, 0, 6, 6, 8, 2, 14, 2, 8, 6, 6, 6, 0, 2, 6, 6, 14, 2, 14, 2, 8, 8, 6, 2, 12, 0, 8, 6, 8, 2, 14, 6, 14, 6, 6, 2, 24, 2, 6, 8, 0, 6, 14, 2, 8, 6, 14, 2, 24, 2, 6, 8, 8, 6, 14, 2, 12, 0, 6, 2, 24, 6, 6, 6, 14, 2, 24, 6, 8, 6, 6, 6, 24, 2, 8, 8, 0
Offset: 1

Views

Author

Michel Lagneau, Jul 23 2011

Keywords

Examples

			a(24) = 14 because tau(24) = 8 and the sum of the 3 even divisors {2, 4, 8} is 14.
		

Crossrefs

Cf. A000290 (the positions of zeros).

Programs

  • Mathematica
    Table[Total[Select[Divisors[DivisorSigma[0,n]], EvenQ[ # ]&]], {n, 74}]
  • PARI
    a(n)=sumdiv(sigma(n,0),d,(1-d%2)*d);

Formula

a(n) = A146076(A000005(n)). - Antti Karttunen, May 28 2017
a(n) = A062069(n) - A193349(n). - Amiram Eldar, Jan 27 2025

Extensions

Data section extended to 100 terms by Antti Karttunen, May 28 2017
Showing 1-2 of 2 results.