cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A193349 Sum of odd divisors of tau(n).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 6, 1, 4, 1, 4, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 6, 4, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 8, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 4, 4, 1, 1, 1, 6, 6, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Michel Lagneau, Jul 23 2011

Keywords

Examples

			a(36) = 13 because tau(36) = 9 and the sum of the 3 odd divisors  {1, 3, 9} is 13.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[DivisorSigma[0,n]], OddQ[ # ]&]], {n, 80}]
  • PARI
    a(n)=sumdiv(sigma(n,0),d,(d%2)*d);

Formula

a(n) = A000593(A000005(n)). - Reinhard Zumkeller, Jul 25 2011
From Amiram Eldar, Aug 12 2024: (Start)
a(n) = 1 if and only if n is in A036537.
a(n) = A062069(n) if and only if n is a square. (End)

A193347 Number of even divisors of tau(n).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 2, 0, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 3, 0, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 0, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 0, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 0, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 0, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 2, 2, 2, 2, 4, 1, 2, 2, 0, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 2, 1, 3
Offset: 1

Views

Author

Michel Lagneau, Jul 23 2011

Keywords

Examples

			a(24) = 3 because tau(24) = 8 and the 3 even divisors are {2, 4, 8}.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[DivisorSigma[0,n]]}, Count[EvenQ[d], True]]; Table[f[n], {n, 80}]
  • PARI
    a(n)=sumdiv(sigma(n,0),d,(1-d%2));

Formula

a(n) = A183063(A000005(n)). - Antti Karttunen, May 28 2017
From Amiram Eldar, Jan 27 2025: (Start)
a(n) = 0 if and only if n is a square.
a(n) = A010553(n) - A193348(n). (End)
Showing 1-2 of 2 results.