cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076368 a(1) = 1; for n > 1, a(n) = prime(n) - prime(n-1) + 1.

Original entry on oeis.org

1, 2, 3, 3, 5, 3, 5, 3, 5, 7, 3, 7, 5, 3, 5, 7, 7, 3, 7, 5, 3, 7, 5, 7, 9, 5, 3, 5, 3, 5, 15, 5, 7, 3, 11, 3, 7, 7, 5, 7, 7, 3, 11, 3, 5, 3, 13, 13, 5, 3, 5, 7, 3, 11, 7, 7, 7, 3, 7, 5, 3, 11, 15, 5, 3, 5, 15, 7, 11, 3, 5, 7, 9, 7, 7, 5, 7, 9, 5, 9, 11, 3, 11, 3, 7, 5, 7, 9, 5, 3, 5, 13, 9, 5, 9, 5, 7
Offset: 1

Views

Author

Labos Elemer, Oct 14 2002

Keywords

Comments

Number of occurrences of n in A060646 or n-th prime in A076367.
Sequences A060646, A076367, A076368 were used in proving a property of 30. See A048597, A060646 and corresponding References. It is provable [Bonse] that a(n)>=3 if n>3.
For n>1, a(n) is the sum of the digits of prime(n) in the base prime(n-1). - R. J. Cano, Dec 31 2016; corrected by Michel Marcus, Jan 01 2017

Crossrefs

Cf. A048597, A060646, A076367. See also A076366.

Programs

  • Magma
    [1] cat [NthPrime(n)-NthPrime(n-1)+1: n in [1..80]]; // Vincenzo Librandi, Jan 01 2017
  • Mathematica
    c[x_, j_] := x+1-(j+Prime[j])c[x, 0]=x; a=1000; t=Table[0, {a}]; t1=Table[0, {a}]; Table[fl=1; (*Print["% ", u, " #"]; *)Do[s=c[u, n]; If[Equal[fl, 1]&&Equal[Sign[s], -1], Print[n]; t[[u]]=n; t1[[u]]=Prime[n]; fl=0], {n, 1, u}], {u, 1, a}]//t (*=A060646*)//t1 (*=A076367*) Table[Count[t, j], {j, 1, PrimePi[a]}]
    (* Second program *)
    Table[If[n == 1, 1, (Prime@ n - Prime[n - 1]) + 1], {n, 97}] (* Michael De Vlieger, Dec 31 2016 *)
    Join[{1},Differences[Prime[Range[100]]]+1] (* Harvey P. Dale, Mar 13 2019 *)

Extensions

Simpler description from Vladeta Jovovic, Mar 29 2003