cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076390 Decimal expansion of lemniscate constant B.

Original entry on oeis.org

5, 9, 9, 0, 7, 0, 1, 1, 7, 3, 6, 7, 7, 9, 6, 1, 0, 3, 7, 1, 9, 9, 6, 1, 2, 4, 6, 1, 4, 0, 1, 6, 1, 9, 3, 9, 1, 1, 3, 6, 0, 6, 3, 3, 1, 6, 0, 7, 8, 2, 5, 7, 7, 9, 1, 3, 1, 8, 3, 7, 4, 7, 6, 4, 7, 3, 2, 0, 2, 6, 0, 7, 0, 7, 1, 9, 5, 7, 8, 3, 5, 4, 1, 7, 9, 4, 2, 7, 7, 8, 2, 4, 4, 8, 9, 6, 6, 9, 4, 6, 8, 7, 9, 5, 3, 6
Offset: 0

Views

Author

Robert G. Wilson v, Oct 09 2002

Keywords

Comments

Also decimal expansion of AGM(1,i)/(1+i).
See A085565 for the lemniscate constant A. - Peter Bala, Oct 25 2019
Also the ratio of height to diameter of a "Mylar balloon" (see Paulsen). - Jeremy Tan, May 05 2021

Examples

			0.599070117367796103719961246140161939113606331607825779131837476473202607...
AGM(1,i) = 0.59907011736779610371... + 0.59907011736779610371...*i
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley, 1998.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 421.

Crossrefs

Programs

Formula

Equals (2*Pi)^(-1/2)*GAMMA(3/4)^2.
Equals ee/sqrt(2)-1/2*sqrt(2*ee^2-Pi) where ee = EllipticE(1/2), or also Product_{m>=1} ((2*m)/(2*m-1))^(-1)^m. - Jean-François Alcover, Sep 02 2014, after Steven Finch.
Equals sqrt(2) * Pi^(3/2) / GAMMA(1/4)^2. - Vaclav Kotesovec, Oct 03 2019
From Peter Bala, Oct 25 2019: (Start)
Equals 1 - 1/3 - 1/(3*7) - (1*3)/(3*7*11) - (1*3*5)/(3*7*11*15) - ... = hypergeom([-1/2,1],[3/4],1/2) by Gauss’s second summation theorem.
Equivalently, define a sequence of rational numbers r(n) recursively by r(n) = (2*n - 3)/(4*n - 1)*r(n-1) with r(0) = 1. Then the constant equals Sum_{n >= 0} r(n) = 1 - 1/3 - 1/21 - 1/77 - 1/231 - 1/627 - 3/4807 - 1/3933 - 13/121923 - 13/284487 - 17/853461 - .... The partial sum of the series to 100 terms gives the constant correct to 32 decimal places.
Equals (1/3) + (1*3)/(3*7) + (1*3*5)/(3*7*11) + ... = (1/3) * hypergeom ([3/2,1],[7/4],1/2). (End)
Equals (1/2) * A053004. - Amiram Eldar, Aug 26 2020
Equals (2/3) * 1/A243340. - Peter Bala, Mar 25 2024
Equals Product_{n>=1} exp(((-1)^n*beta(n))/n), where beta(n) is the Dirichlet beta function. - Antonio Graciá Llorente, Oct 16 2024
Equals Integral_{x=0..1} x^2/sqrt(1 - x^4) dx = sqrt(Pi)*Gamma(7/4)/(3*Gamma(5/4)) (see Finch). - Stefano Spezia, Dec 15 2024

Extensions

Edited by N. J. A. Sloane, Nov 01 2008 at the suggestion of R. J. Mathar