cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A076391 Continued fraction for agm(1,i)/(1+i) (A076390).

Original entry on oeis.org

0, 1, 1, 2, 42, 1, 1, 1, 1, 1, 1, 6, 1, 4, 3, 1, 1, 32, 1, 1, 16, 18, 2, 1, 10, 1, 3, 2, 2, 1, 2, 1, 1, 4, 3, 8, 2, 1, 2, 1, 12, 6, 1, 6, 4, 1, 11, 2, 2, 12, 1, 1, 2, 1, 1, 5, 1, 4, 1, 16, 1, 1, 5, 1, 2, 5, 4, 1, 4, 1, 1, 1, 1, 2, 3, 1, 17, 1, 1, 4, 4, 3, 2, 1, 2, 5, 8, 1, 9, 15, 1, 2, 2, 1, 2, 61, 1, 3
Offset: 1

Views

Author

Robert G. Wilson v, Oct 09 2002

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[ Chop[ N[ ArithmeticGeometricMean[1, I]/(1 + I), 150]]]

A085566 Duplicate of A076390.

Original entry on oeis.org

5, 9, 9, 0, 7, 0, 1, 1, 7, 3, 6, 7, 7, 9, 6, 1, 0, 3, 7, 1, 9, 9, 6, 1, 2, 4, 6, 1, 4, 0, 1, 6, 1
Offset: 0

Views

Author

Keywords

A000796 Decimal expansion of Pi (or digits of Pi).

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0, 5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8, 1, 6, 4, 0, 6, 2, 8, 6, 2, 0, 8, 9, 9, 8, 6, 2, 8, 0, 3, 4, 8, 2, 5, 3, 4, 2, 1, 1, 7, 0, 6, 7, 9, 8, 2, 1, 4
Offset: 1

Views

Author

Keywords

Comments

Sometimes called Archimedes's constant.
Ratio of a circle's circumference to its diameter.
Also area of a circle with radius 1.
Also surface area of a sphere with diameter 1.
A useful mnemonic for remembering the first few terms: How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics ...
Also ratio of surface area of sphere to one of the faces of the circumscribed cube. Also ratio of volume of a sphere to one of the six inscribed pyramids in the circumscribed cube. - Omar E. Pol, Aug 09 2012
Also surface area of a quarter of a sphere of radius 1. - Omar E. Pol, Oct 03 2013
Also the area under the peak-shaped even function f(x)=1/cosh(x). Proof: for the upper half of the integral, write f(x) = (2*exp(-x))/(1+exp(-2x)) = 2*Sum_{k>=0} (-1)^k*exp(-(2k+1)*x) and integrate term by term from zero to infinity. The result is twice the Gregory series for Pi/4. - Stanislav Sykora, Oct 31 2013
A curiosity: a 144 X 144 magic square of 7th powers was recently constructed by Toshihiro Shirakawa. The magic sum = 3141592653589793238462643383279502884197169399375105, which is the concatenation of the first 52 digits of Pi. See the MultiMagic Squares link for details. - Christian Boyer, Dec 13 2013 [Comment revised by N. J. A. Sloane, Aug 27 2014]
x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 25 2013
Also diameter of a sphere whose surface area equals the volume of the circumscribed cube. - Omar E. Pol, Jan 13 2014
From Daniel Forgues, Mar 20 2015: (Start)
An interesting anecdote about the base-10 representation of Pi, with 3 (integer part) as first (index 1) digit:
358 0
359 3
360 6
361 0
362 0
And the circle is customarily subdivided into 360 degrees (although Pi radians yields half the circle)...
(End)
Sometimes referred to as Archimedes's constant, because the Greek mathematician computed lower and upper bounds of Pi by drawing regular polygons inside and outside a circle. In Germany it was called the Ludolphian number until the early 20th century after the Dutch mathematician Ludolph van Ceulen (1540-1610), who calculated up to 35 digits of Pi in the late 16th century. - Martin Renner, Sep 07 2016
As of the beginning of 2019 more than 22 trillion decimal digits of Pi are known. See the Wikipedia article "Chronology of computation of Pi". - Harvey P. Dale, Jan 23 2019
On March 14, 2019, Emma Haruka Iwao announced the calculation of 31.4 trillion digits of Pi using Google Cloud's infrastructure. - David Radcliffe, Apr 10 2019
Also volume of three quarters of a sphere of radius 1. - Omar E. Pol, Aug 16 2019
On August 5, 2021, researchers from the University of Applied Sciences of the Grisons in Switzerland announced they had calculated 62.8 trillion digits. Guinness World Records has not verified this yet. - Alonso del Arte, Aug 23 2021
The Hermite-Lindemann (1882) theorem states, that if z is a nonzero algebraic number, then e^z is a transcendent number. The transcendence of Pi then results from Euler's relation: e^(i*Pi) = -1. - Peter Luschny, Jul 21 2023
The 10000 words of the book "Not A Wake" by Michael Keith, written in Pilish, match in length the first 10000 digits of Pi. - Paolo Xausa, Aug 07 2025

Examples

			3.1415926535897932384626433832795028841971693993751058209749445923078164062\
862089986280348253421170679821480865132823066470938446095505822317253594081\
284811174502841027019385211055596446229489549303819...
		

References

  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.
  • J. Arndt & C. Haenel, Pi Unleashed, Springer NY 2001.
  • P. Beckmann, A History of Pi, Golem Press, Boulder, CO, 1977.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 396.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 237-239.
  • J.-P. Delahaye, Le fascinant nombre pi, Pour la Science, Paris 1997.
  • P. Eyard and J.-P. Lafon, The Number Pi, Amer. Math. Soc., 2004.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.4.
  • Le Petit Archimede, Special Issue On Pi, Supplement to No. 64-5, May 1980 ADCS Amiens.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equations 1:7:1, 1:7:2 at pages 12-13.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 48-55.

Crossrefs

Cf. A001203 (continued fraction).
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), this sequence (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A224750 (b=26), A224751 (b=27), A060707 (b=60). - Jason Kimberley, Dec 06 2012
Decimal expansions of expressions involving Pi: A002388 (Pi^2), A003881 (Pi/4), A013661 (Pi^2/6), A019692 (2*Pi=tau), A019727 (sqrt(2*Pi)), A059956 (6/Pi^2), A060294 (2/Pi), A091925 (Pi^3), A092425 (Pi^4), A092731 (Pi^5), A092732 (Pi^6), A092735 (Pi^7), A092736 (Pi^8), A163973 (Pi/log(2)).
Cf. A001901 (Pi/2; Wallis), A002736 (Pi^2/18; Euler), A007514 (Pi), A048581 (Pi; BBP), A054387 (Pi; Newton), A092798 (Pi/2), A096954 (Pi/4; Machin), A097486 (Pi), A122214 (Pi/2), A133766 (Pi/4 - 1/2), A133767 (5/6 - Pi/4), A166107 (Pi; MGL).

Programs

  • Haskell
    -- see link: Literate Programs
    import Data.Char (digitToInt)
    a000796 n = a000796_list (n + 1) !! (n + 1)
    a000796_list len = map digitToInt $ show $ machin' `div` (10 ^ 10) where
       machin' = 4 * (4 * arccot 5 unity - arccot 239 unity)
       unity = 10 ^ (len + 10)
       arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
         arccot' x unity summa xpow n sign
          | term == 0 = summa
          | otherwise = arccot'
            x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
          where term = xpow `div` n
    -- Reinhard Zumkeller, Nov 24 2012
    
  • Haskell
    -- See Niemeijer link and also Gibbons link.
    a000796 n = a000796_list !! (n-1) :: Int
    a000796_list = map fromInteger $ piStream (1, 0, 1)
       [(n, a*d, d) | (n, d, a) <- map (\k -> (k, 2 * k + 1, 2)) [1..]] where
       piStream z xs'@(x:xs)
         | lb /= approx z 4 = piStream (mult z x) xs
         | otherwise = lb : piStream (mult (10, -10 * lb, 1) z) xs'
         where lb = approx z 3
               approx (a, b, c) n = div (a * n + b) c
               mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
    -- Reinhard Zumkeller, Jul 14 2013, Jun 12 2013
    
  • Macsyma
    py(x) := if equal(6,6+x^2) then 2*x else (py(x:x/3),3*%%-4*(%%-x)^3); py(3.); py(dfloat(%)); block([bfprecision:35], py(bfloat(%))) /* Bill Gosper, Sep 09 2002 */
    
  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi))); // Bruno Berselli, Mar 12 2013
    
  • Maple
    Digits := 110: Pi*10^104:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Oct 29 2019
  • Mathematica
    RealDigits[ N[ Pi, 105]] [[1]]
    Table[ResourceFunction["NthDigit"][Pi, n], {n, 1, 102}] (* Joan Ludevid, Jun 22 2022; easy to compute a(10000000)=7 with this function; requires Mathematica 12.0+ *)
  • PARI
    { default(realprecision, 20080); x=Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b000796.txt", n, " ", d)); } \\ Harry J. Smith, Apr 15 2009
    
  • PARI
    A796=[]; A000796(n)={if(n>#A796, localprec(n*6\5+29); A796=digits(Pi\.1^(precision(Pi)-3))); A796[n]} \\ NOTE: as the other programs, this returns the n-th term of the sequence, with n = 1, 2, 3, ... and not n = 1, 0, -1, -2, .... - M. F. Hasler, Jun 21 2022
    
  • PARI
    first(n)= default(realprecision, n+10); digits(floor(Pi*10^(n-1))) \\ David A. Corneth, Jun 21 2022
    
  • PARI
    lista(nn, p=20)= {my(u=10^(nn+p+1), f(x, u)=my(n=1, q=u\x, r=q, s=1, t); while(t=(q\=(x*x))\(n+=2), r+=(s=-s)*t); r*4); digits((4*f(5, u)-f(239, u))\10^(p+2)); } \\ Machin-like, with p > the maximal number of consecutive 9-digits to be expected (A048940) - Ruud H.G. van Tol, Dec 26 2024
    
  • Python
    from sympy import pi, N; print(N(pi, 1000)) # David Radcliffe, Apr 10 2019
    
  • Python
    from mpmath import mp
    def A000796(n):
        if n >= len(A000796.str): mp.dps = n*6//5+50; A000796.str = str(mp.pi-5/mp.mpf(10)**mp.dps)
        return int(A000796.str[n if n>1 else 0])
    A000796.str = '' # M. F. Hasler, Jun 21 2022
    
  • SageMath
    m=125
    x=numerical_approx(pi, digits=m+5)
    a=[ZZ(i) for i in x.str(skip_zeroes=True) if i.isdigit()]
    a[:m] # G. C. Greubel, Jul 18 2023

Formula

Pi = 4*Sum_{k>=0} (-1)^k/(2k+1) [Madhava-Gregory-Leibniz, 1450-1671]. - N. J. A. Sloane, Feb 27 2013
From Johannes W. Meijer, Mar 10 2013: (Start)
2/Pi = (sqrt(2)/2) * (sqrt(2 + sqrt(2))/2) * (sqrt(2 + sqrt(2 + sqrt(2)))/2) * ... [Viete, 1593]
2/Pi = Product_{k>=1} (4*k^2-1)/(4*k^2). [Wallis, 1655]
Pi = 3*sqrt(3)/4 + 24*(1/12 - Sum_{n>=2} (2*n-2)!/((n-1)!^2*(2*n-3)*(2*n+1)*2^(4*n-2))). [Newton, 1666]
Pi/4 = 4*arctan(1/5) - arctan(1/239). [Machin, 1706]
Pi^2/6 = 3*Sum_{n>=1} 1/(n^2*binomial(2*n,n)). [Euler, 1748]
1/Pi = (2*sqrt(2)/9801) * Sum_{n>=0} (4*n)!*(1103+26390*n)/((n!)^4*396^(4*n)). [Ramanujan, 1914]
1/Pi = 12*Sum_{n>=0} (-1)^n*(6*n)!*(13591409 + 545140134*n)/((3*n)!*(n!)^3*(640320^3)^(n+1/2)). [David and Gregory Chudnovsky, 1989]
Pi = Sum_{n>=0} (1/16^n) * (4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)). [Bailey-Borwein-Plouffe, 1989] (End)
Pi = 4 * Sum_{k>=0} 1/(4*k+1) - 1/(4*k+3). - Alexander R. Povolotsky, Dec 25 2008
Pi = 4*sqrt(-1*(Sum_{n>=0} (i^(2*n+1))/(2*n+1))^2). - Alexander R. Povolotsky, Jan 25 2009
Pi = Integral_{x=-oo..oo} dx/(1+x^2). - Mats Granvik and Gary W. Adamson, Sep 23 2012
Pi - 2 = 1/1 + 1/3 - 1/6 - 1/10 + 1/15 + 1/21 - 1/28 - 1/36 + 1/45 + ... [Jonas Castillo Toloza, 2007], that is, Pi - 2 = Sum_{n>=1} (1/((-1)^floor((n-1)/2)*(n^2+n)/2)). - José de Jesús Camacho Medina, Jan 20 2014
Pi = 3 * Product_{t=img(r),r=(1/2+i*t) root of zeta function} (9+4*t^2)/(1+4*t^2) <=> RH is true. - Dimitris Valianatos, May 05 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Pi = Sum_{k>=1} (3^k - 1)*zeta(k+1)/4^k.
Pi = 2*Product_{k>=2} sec(Pi/2^k).
Pi = 2*Integral_{x>=0} sin(x)/x dx. (End)
Pi = 2^{k + 1}*arctan(sqrt(2 - a_{k - 1})/a_k) at k >= 2, where a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2). - Sanjar Abrarov, Feb 07 2017
Pi = Integral_{x = 0..2} sqrt(x/(2 - x)) dx. - Arkadiusz Wesolowski, Nov 20 2017
Pi = lim_{n->oo} 2/n * Sum_{m=1,n} ( sqrt( (n+1)^2 - m^2 ) - sqrt( n^2 - m^2 ) ). - Dimitri Papadopoulos, May 31 2019
From Peter Bala, Oct 29 2019: (Start)
Pi = Sum_{n >= 0} 2^(n+1)/( binomial(2*n,n)*(2*n + 1) ) - Euler.
More generally, Pi = (4^x)*x!/(2*x)! * Sum_{n >= 0} 2^(n+1)*(n+x)!*(n+2*x)!/(2*n+2*x+1)! = 2*4^x*x!^2/(2*x+1)! * hypergeom([2*x+1,1], [x+3/2], 1/2), valid for complex x not in {-1,-3/2,-2,-5/2,...}. Here, x! is shorthand notation for the function Gamma(x+1). This identity may be proved using Gauss's second summation theorem.
Setting x = 3/4 and x = -1/4 (resp. x = 1/4 and x = -3/4) in the above identity leads to series representations for the constant A085565 (resp. A076390). (End)
Pi = Im(log(-i^i)) = log(i^i)*(-2). - Peter Luschny, Oct 29 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals 2 + Integral_{x=0..1} arccos(x)^2 dx.
Equals Integral_{x=0..oo} log(1 + 1/x^2) dx.
Equals Integral_{x=0..oo} log(1 + x^2)/x^2 dx.
Equals Integral_{x=-oo..oo} exp(x/2)/(exp(x) + 1) dx. (End)
Equals 4*(1/2)!^2 = 4*Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
From Peter Bala, Dec 08 2021: (Start)
Pi = 32*Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9))= 384*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)*(4*n^2 - 9)*(4*n^2 - 25)).
More generally, it appears that for k = 1,2,3,..., Pi = 16*(2*k)!*Sum_{n >= 1} (-1)^(n+k+1)*n^2/((4*n^2 - 1)* ... *(4*n^2 - (2*k+1)^2)).
Pi = 32*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^2 = 768*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2*(4*n^2 - 9)^2).
More generally, it appears that for k = 0,1,2,..., Pi = 16*Catalan(k)*(2*k)!*(2*k+2)!*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2* ... *(4*n^2 - (2*k+1)^2)^2).
Pi = (2^8)*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^4 = (2^17)*(3^5)*Sum_{n >= 2} (-1)^n*n^2*(n^2 - 1)/((4*n^2 - 1)^4*(4*n^2 - 9)^4) = (2^27)*(3^5)*(5^5)* Sum_{n >= 3} (-1)^(n+1)*n^2*(n^2 - 1)*(n^2 - 4)/((4*n^2 - 1)^4*(4*n^2 - 9)^4*(4*n^2 - 25)^4). (End)
For odd n, Pi = (2^(n-1)/A001818((n-1)/2))*gamma(n/2)^2. - Alan Michael Gómez Calderón, Mar 11 2022
Pi = 4/phi + Sum_{n >= 0} (1/phi^(12*n)) * ( 8/((12*n+3)*phi^3) + 4/((12*n+5)*phi^5) - 4/((12*n+7)*phi^7) - 8/((12*n+9)*phi^9) - 4/((12*n+11)*phi^11) + 4/((12*n+13)*phi^13) ) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, May 16 2022
Pi = sqrt(3)*(27*S - 36)/24, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Integral_{x=0..1} 1/sqrt(x-x^2) dx. - Michal Paulovic, Sep 24 2023
From Peter Bala, Oct 28 2023: (Start)
Pi = 48*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*(6*n + 5)).
More generally, it appears that for k >= 0 we have Pi = A(k) + B(k)*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 5)), where A(k) is a rational approximation to Pi and B(k) = (3 * 2^(3*k+3) * (3*k + 2)!) / (2^(3*k+1) - (-1)^k). The first few values of A(k) for k >= 0 are [0, 256/85, 65536/20955, 821559296/261636375, 6308233216/2008080987, 908209489444864/289093830828075, ...].
Pi = 16/5 - (288/5)*Sum_{n >= 0} (-1)^n * (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 9)).
More generally, it appears that for k >= 0 we have Pi = C(k) + D(k)*Sum_{n >= 0} (-1)^n* (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 3)), where C(k) and D(k) are rational numbers. The case k = 0 is the Madhava-Gregory-Leibniz series for Pi.
Pi = 168/53 + (288/53)*Sum_{n >= 0} (-1)^n * (42*n^2 + 25*n)/((6*n + 1)*(6*n + 3)*(6*n + 5)*(6*n + 7)).
More generally, it appears that for k >= 1 we have Pi = E(k) + F(k)*Sum_{n >= 0} (-1)^n * (6*(6*k + 1)*n^2 + (24*k + 1)*n)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 1)), where E(k) and F(k) are rational numbers. (End)
From Peter Bala, Nov 10 2023: (Start)
The series representation Pi = 4 * Sum_{k >= 0} 1/(4*k + 1) - 1/(4*k + 3) given above by Alexander R. Povolotsky, Dec 25 2008, is the case n = 0 of the more general result (obtained by the WZ method): for n >= 0, there holds
Pi = Sum_{j = 0.. n-1} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) + 8*(n+1)!*Sum_{k >= 0} 1/((4*k + 1)*(4*k + 3)*...*(4*k + 2*n + 3)).
Letting n -> oo gives the rapidly converging series Pi = Sum_{j >= 0} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) due to Euler.
More generally, it appears that for n >= 1, Pi = 1/(2*n-1)!!^2 * Sum_{j >= 0} (Product_{i = 0..2*n-1} j - i) * 2^(j+1)/((2*j + 1)*binomial(2*j,j)).
For any integer n, Pi = (-1)^n * 4 * Sum_{k >= 0} 1/(4*k + 1 + 2*n) - 1/(4*k + 3 - 2*n). (End)
Pi = Product_{k>=1} ((k^3*(k + 2)*(2*k + 1)^2)/((k + 1)^4*(2*k - 1)^2))^k. - Antonio Graciá Llorente, Jun 13 2024
Equals Integral_{x=0..2} sqrt(8 - x^2) dx - 2 (see Ambrisi and Rizzi). - Stefano Spezia, Jul 21 2024
Equals 3 + 4*Sum_{k>0} (-1)^(k+1)/(4*k*(1+k)*(1+2*k)) (see Wells at p. 53). - Stefano Spezia, Aug 31 2024
Equals 4*Integral_{x=0..1} sqrt(1 - x^2) dx = lim_{n->oo} (4/n^2)*Sum_{k=0..n} sqrt(n^2 - k^2) (see Finch). - Stefano Spezia, Oct 19 2024
Equals Beta(1/2,1/2) (see Shamos). - Stefano Spezia, Jun 03 2025
From Kritsada Moomuang, Jun 18 2025: (Start)
Equals 2 + Integral_{x=0..1} 1/(sqrt(x)*(1 + sqrt(1 - x))) dx.
Equals 2 + Integral_{x=0..1} log(1 + sqrt(1 - x))/sqrt(x) dx. (End)
Pi = 2*arccos(1/phi) + arccos(1/phi^3) = 4*arcsin(1/phi) + 2*arcsin(1/phi^3) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, Jul 02 2025
Pi = Sum_{n >= 0} zeta(2*n)*(2^(2*n - 1) - 1)/2^(4*n - 3). - Andrea Pinos, Jul 29 2025

Extensions

Additional comments from William Rex Marshall, Apr 20 2001

A085565 Decimal expansion of lemniscate constant A.

Original entry on oeis.org

1, 3, 1, 1, 0, 2, 8, 7, 7, 7, 1, 4, 6, 0, 5, 9, 9, 0, 5, 2, 3, 2, 4, 1, 9, 7, 9, 4, 9, 4, 5, 5, 5, 9, 7, 0, 6, 8, 4, 1, 3, 7, 7, 4, 7, 5, 7, 1, 5, 8, 1, 1, 5, 8, 1, 4, 0, 8, 4, 1, 0, 8, 5, 1, 9, 0, 0, 3, 9, 5, 2, 9, 3, 5, 3, 5, 2, 0, 7, 1, 2, 5, 1, 1, 5, 1, 4, 7, 7, 6, 6, 4, 8, 0, 7, 1, 4, 5, 4
Offset: 1

Views

Author

N. J. A. Sloane, Jul 06 2003

Keywords

Comments

This number is transcendental by a result of Schneider on elliptic integrals. - Benoit Cloitre, Jan 08 2006
The two lemniscate constants are A = Integral_{x = 0..1} 1/sqrt(1 - x^4) dx and B = Integral_{x = 0..1} x^2/sqrt(1 - x^4) dx. See A076390. - Peter Bala, Oct 25 2019
Also the ratio of generating curve length to diameter of a "Mylar balloon" (see Paulsen). - Jeremy Tan, May 05 2021

Examples

			1.3110287771460599052324197949455597068413774757158115814084108519...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, p. 140, Entry 25.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 421.
  • Th. Schneider, Transzendenzuntersuchungen periodischer Funktionen (1934).
  • Th. Schneider, Arithmetische Untersuchungen elliptischer Integrale (1937).

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Gamma(1/4)^2/(4*Sqrt(2*Pi(C)))]; // G. C. Greubel, Nov 05 2017
  • Mathematica
    RealDigits[ Gamma[1/4]^2/(4*Sqrt[2*Pi]), 10, 99][[1]]
    (* or *)
    RealDigits[ EllipticK[-1], 10, 99][[1]] (* Jean-François Alcover, Mar 07 2013, updated Jul 30 2016 *)
  • PARI
    gamma(1/4)^2/4/sqrt(2*Pi)
    
  • PARI
    K(x)=Pi/2/agm(1,sqrt(1-x))
    K(-1) \\ Charles R Greathouse IV, Aug 02 2018
    
  • PARI
    ellK(I) \\ Charles R Greathouse IV, Feb 04 2025
    

Formula

Equals (1/4)*(2*Pi)^(-1/2)*GAMMA(1/4)^2.
Equals Integral_{x>=1}dx/sqrt(4x^3-4x). - Benoit Cloitre, Jan 08 2006
Equals Product_(k>=0, [(4k+3)(4k+4)] / [(4k+5)(4k+2)] ) (Gauss). - Ralf Stephan, Mar 04 2008 [corrected by Vaclav Kotesovec, May 01 2020]
Equals Pi/sqrt(8)/agm(1,sqrt(1/2)).
Equals Pi/sqrt(8)*hypergeom([1/2,1/2],[1],1/2).
Product_{m>=1} ((2*m)/(2*m+1))^(-1)^m. - Jean-François Alcover, Sep 02 2014, after Steven Finch
From Peter Bala, Mar 09 2015: (Start)
Equals Integral_{x = 0..1} 1/sqrt(1 - x^4) dx.
Continued fraction representations: 2/(1 + 1*3/(2 + 5*7/(2 + 9*11/(2 + ... )))) due to Euler - see Khrushchev, p. 179.
Also equals 1 + 1/(2 + 2*3/(2 + 4*5/(2 + 6*7/(2 + ... )))). (End)
From Peter Bala, Oct 25 2019: (Start)
Equals 1 + 1/5 + (1*3)/(5*9) + (1*3*5)/(5*9*13) + ... = hypergeom([1/2,1],[5/4],1/2) by Gauss's second summation theorem.
Equivalently, define a sequence of rational numbers r(n) recursively by r(n) = (2*n - 3)/(4*n - 3)*r(n-1) with r(1) = 1. Then the constant equals Sum_{n >= 1} r(n) = 1 + 1/5 + 1/15 + 1/39 + 7/663 + 1/221 + 11/5525 + 11/12325 + 1/2465 + .... The partial sum of the series to 100 terms gives 32 correct decimal digits for the constant.
Equals (1*3)/(1*5) + (1*3*5)/(1*5*9) + (1*3*5*7)/(1*5*9*13) + ... = (3/5) * hypergeom([5/2,1],[9/4],1/2). (End)
Equals (3/2)*A225119. - Peter Bala, Oct 27 2019
Equals Integral_{x=0..Pi/2} 1/sqrt(1 + cos(x)^2) dx = Integral_{x=0..Pi/2} 1/sqrt(1 + sin(x)^2) dx. - Amiram Eldar, Aug 09 2020
From Peter Bala, Mar 24 2024: (Start)
An infinite family of continued fraction expansions for this constant can be obtained from Berndt, Entry 25, by setting n = 1/2 and x = 4*k + 1 for k >= 0.
For example, taking k = 0 and k = 1 yields
A = 2/(1 + (1*3)/(2 + (5*7)/(2 + (9*11)/(2 + (13*15)/(2 + ... + (4*n + 1)*(4*n + 3)/(2 + ... )))))) and
A = (1/4)*(5 + (1*3)/(10 + (5*7)/(10 + (9*11)/(10 + (13*15)/(10 + ... + (4*n + 1)*(4*n + 3)/(10 + ... )))))). (End)

A053004 Decimal expansion of AGM(1,sqrt(2)).

Original entry on oeis.org

1, 1, 9, 8, 1, 4, 0, 2, 3, 4, 7, 3, 5, 5, 9, 2, 2, 0, 7, 4, 3, 9, 9, 2, 2, 4, 9, 2, 2, 8, 0, 3, 2, 3, 8, 7, 8, 2, 2, 7, 2, 1, 2, 6, 6, 3, 2, 1, 5, 6, 5, 1, 5, 5, 8, 2, 6, 3, 6, 7, 4, 9, 5, 2, 9, 4, 6, 4, 0, 5, 2, 1, 4, 1, 4, 3, 9, 1, 5, 6, 7, 0, 8, 3, 5, 8, 8, 5, 5, 5, 6, 4, 8, 9, 7, 9, 3, 3, 8, 9, 3, 7, 5, 9, 0
Offset: 1

Author

N. J. A. Sloane, Feb 21 2000

Keywords

Comments

AGM(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0=a, b_0=b, a_{n+1}=(a_n+b_n)/2, b_{n+1}=sqrt(a_n*b_n).

Examples

			1.19814023473559220743992249228...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 195.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, page 5.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 420.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 92.

Programs

  • Maple
    evalf(GaussAGM(1, sqrt(2)), 144);  # Alois P. Heinz, Jul 05 2023
  • Mathematica
    RealDigits[ N[ ArithmeticGeometricMean[1, Sqrt[2]], 105]][[1]] (* Jean-François Alcover, Jan 30 2012 *)
    RealDigits[N[(1+Sqrt[2])Pi/(4EllipticK[17-12Sqrt[2]]), 105]][[1]] (* Jean-François Alcover, Jun 02 2019 *)
  • PARI
    default(realprecision, 20080); x=agm(1, sqrt(2)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b053004.txt", n, " ", d)) \\ Harry J. Smith, Apr 20 2009
    
  • PARI
    2*real(agm(1, I)/(1+I)) \\ Michel Marcus, Jul 26 2018
    
  • Python
    from mpmath import mp, agm, sqrt
    mp.dps=106
    print([int(z) for z in list(str(agm(1, sqrt(2))).replace('.', '')[:-1])]) # Indranil Ghosh, Jul 11 2017

Formula

Equals Pi/(2*A085565). - Nathaniel Johnston, May 26 2011
Equals Integral_{x=0..Pi/2} sqrt(sin(x)) or Integral_{x=0..1} sqrt(x/(1-x^2)). - Jean-François Alcover, Apr 29 2013 [cf. Boros & Moll p. 195]
Equals Product_{n>=1} (1+1/A033566(n)) and also 2*AGM(1, i)/(1+i) where i is the imaginary unit. - Dimitris Valianatos, Oct 03 2016
Conjecturally equals 1/( Sum_{n = -infinity..infinity} exp(-Pi*(n+1/2)^2 ) )^2. Cf. A096427. - Peter Bala, Jun 10 2019
From Amiram Eldar, Aug 26 2020: (Start)
Equals 2 * A076390.
Equals Integral_{x=0..Pi} sin(x)^2/sqrt(1 + sin(x)^2) dx. (End)
Equals sqrt(2/Pi)*Gamma(3/4)^2 = Integral_{x = 0..1} 1/(1 - x^2)^(1/4) dx = Pi/Integral_{x = 0..1} 1/(1 - x^2)^(3/4) dx. - Peter Bala, Jan 05 2022
From Peter Bala, Mar 02 2022: (Start)
Equals 2*Integral_{x = 0..1} x^2/sqrt(1 - x^4) dx.
Equals 1 - Integral_{x = 0..1} (sqrt(1 - x^4) - 1)/x^2 dx.
Equals hypergeom([-1/2, -1/4], [3/4], 1) = 1 + Sum_{n >= 0} 1/(4*n + 3)*Catalan(n)*(1/2^(2*n+1)). Cf. A096427. (End)

Extensions

More terms from James Sellers, Feb 22 2000

A243340 Decimal expansion of 4*L/(3*Pi), a constant related to the asymptotic evaluation of the number of primes of the form a^2+b^4, where L is Gauss' lemniscate constant.

Original entry on oeis.org

1, 1, 1, 2, 8, 3, 5, 7, 8, 8, 8, 9, 8, 7, 6, 4, 2, 4, 8, 3, 7, 5, 2, 3, 9, 6, 4, 3, 7, 3, 2, 0, 6, 2, 4, 1, 1, 9, 9, 1, 9, 9, 0, 6, 8, 4, 6, 5, 3, 7, 9, 6, 0, 0, 3, 2, 6, 6, 4, 3, 6, 4, 9, 3, 4, 7, 1, 5, 7, 5, 9, 9, 0, 2, 7, 9, 3, 6, 8, 5, 4, 9, 1, 5, 9, 5, 8, 8, 2, 1, 3, 8, 0, 1, 7, 0, 0, 4, 3, 2, 1, 7, 2, 0, 9
Offset: 1

Author

Jean-François Alcover, Jun 03 2014

Keywords

Examples

			1.11283578889876424837523964373206241199199...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, p. 140, Entry 25.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 102.

Crossrefs

Cf. A062539 (L), A076390, A085565, A225119 (L/3).

Programs

  • Mathematica
    L = Pi^(3/2)/(Sqrt[2]*Gamma[3/4]^2); RealDigits[4*L/(3*Pi), 10, 103] // First
  • PARI
    2*sqrt(2*Pi)/(3*gamma(3/4)^2) \\ Stefano Spezia, Nov 27 2024

Formula

Equals 2*sqrt(2*Pi)/(3*Gamma(3/4)^2).
From Peter Bala, Mar 24 2024: (Start)
An infinite family of continued fraction expansions for this constant can be obtained from Berndt, Entry 25, by setting n = 1/2 and x = 4*k + 3 for k >= 0.
For example, taking k = 0 and k = 1 yields
4*L/(3*Pi) = 1 + 1/(6 + (5*7)/(6 + (9*11)/(6 + (13*15)/(6 + ... + (4*n + 1)*(4*n + 3)/(6 + ... ))))) and
4*L/(3*Pi) = 8/(7 + (1*3)/(14 + (5*7)/(14 + (9*11)/(14 + (13*15)/(14 + ... + (4*n + 1)*(4*n + 3)/(14 + ... )))))).
Equals (2/3) * 1/A076390. (End)

A076392 Increasing partial quotients of the continued fraction for agm(1,i)/(1+i).

Original entry on oeis.org

0, 1, 2, 42, 61, 88, 238, 254, 288, 347, 575, 4034, 9853, 21798, 49736, 108435, 109003, 181562, 1035352, 1955976, 6950275, 30712753, 41463747, 45117343, 112401242, 116579541
Offset: 1

Author

Robert G. Wilson v, Oct 09 2002

Keywords

Examples

			A076391(1) = 0
A076391(2) = 1
A076391(4) = 2
A076391(5) = 42
A076391(96) = 61
A076391(121) = 88
A076391(310) = 238
A076391(461) = 254
A076391(540) = 288
A076391(627) = 347
A076391(699) = 575
A076391(1136) = 4034
A076391(2986) = 9853
A076391(4172) = 21798
A076391(16727) = 49736
A076391(39201) = 108435
A076391(110180) = 109003
A076391(130606) = 181562
A076391(506314) = 1035352
A076391(512390) = 1955976
A076391(1248836) = 6950275
A076391(1990391) = 30712753
A076391(2528055) = 41463747
A076391(4853400) = 45117343
A076391(7427594) = 112401242
A076391(96166990) = 116579541
		

Crossrefs

Programs

  • Mathematica
    a = ContinuedFraction[ Chop[ N[ ArithmeticGeometricMean[1, I]/(1 + I), 10^4]]]; b = 0; Do[ If[ a[[n]] > b, Print[a[[n]]]; b = a[[n]]], {n, 1, 10^4}]

Extensions

a(21)-a(26) from Vaclav Kotesovec, Oct 03 2019

A105419 Decimal expansion of the arc length of the sine or cosine curve for one full period.

Original entry on oeis.org

7, 6, 4, 0, 3, 9, 5, 5, 7, 8, 0, 5, 5, 4, 2, 4, 0, 3, 5, 8, 0, 9, 5, 2, 4, 1, 6, 4, 3, 4, 2, 8, 8, 6, 5, 8, 3, 8, 1, 9, 9, 3, 5, 2, 2, 9, 2, 9, 4, 5, 4, 9, 4, 4, 2, 1, 6, 0, 9, 9, 3, 3, 1, 3, 4, 9, 4, 3, 9, 1, 6, 0, 2, 4, 2, 8, 6, 5, 9, 8, 4, 2, 1, 3, 2, 3, 6, 2, 1, 7, 8, 9, 0, 2, 4, 4, 4, 9, 6, 5, 6, 4, 4, 0, 8
Offset: 1

Author

Robert G. Wilson v, Apr 06 2005

Keywords

Examples

			I=7.640395578055424035809524164342886583819935229294549442160993313...
		

References

  • Howard Anton, Irl C. Bivens, Stephen L. Davis, Calculus, Early Transcendentals, 7th Edition, John Wiley & Sons, Inc., NY, Section 7.4 Length of a Plane Curve, page 489.

Programs

  • Maple
    evalf(4*sqrt(2)*EllipticE(1/sqrt(2)), 120); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[ NIntegrate[ Sqrt[1 + Cos[x]^2], {x, 0, 2Pi}, MaxRecursion -> 12, WorkingPrecision -> 128], 10, 111][[1]]
    RealDigits[ N[ 4*Sqrt[2]*EllipticE[1/2], 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)

Formula

Equals Integral_{x=0..2*Pi} sqrt(1+cos(x)^2) dx.
Also equals 4*B+Pi/B where B is the lemniscate constant A076390, or sqrt(2/Pi)*(2*gamma(3/4)^4 + Pi^2)/gamma(3/4)^2. - Jean-François Alcover, Apr 17 2013

A257407 Decimal expansion of E(1/sqrt(2)) = 1.35064..., where E is the complete elliptic integral.

Original entry on oeis.org

1, 3, 5, 0, 6, 4, 3, 8, 8, 1, 0, 4, 7, 6, 7, 5, 5, 0, 2, 5, 2, 0, 1, 7, 4, 7, 3, 5, 3, 3, 8, 7, 2, 5, 8, 4, 1, 3, 4, 9, 5, 2, 2, 3, 6, 6, 9, 2, 4, 3, 5, 4, 5, 4, 5, 3, 2, 3, 2, 5, 3, 7, 0, 8, 8, 5, 7, 8, 7, 7, 8, 9, 0, 8, 3, 6, 1, 2, 7, 3, 6, 9, 0, 4, 0, 2, 3, 6, 0, 7, 7, 8, 2, 2, 4, 9, 1, 5, 6, 3, 6, 0, 9, 9, 4, 7
Offset: 1

Author

Jean-François Alcover, Apr 22 2015

Keywords

Comments

This constant is sometimes expressed as E(1/2), with a different convention of argument (Cf. Mathematica).

Examples

			1.3506438810476755025201747353387258413495223669243545453232537...
		

References

  • Jonathan Borwein, David H. Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century, CRC Press (2008), p. 145.

Programs

  • Maple
    evalf(EllipticE(1/sqrt(2)),120); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[EllipticE[1/2], 10, 106] // First

Formula

Equals (4*B^2 + Pi)/(4*sqrt(2)*B), where B is the lemniscate constant A076390.
Equals Pi^(3/2)/Gamma(1/4)^2 + Gamma(1/4)^2/(8*Pi^(1/2)).
Equals (agm(1,sqrt(2))+Pi/agm(1,sqrt(2)))/sqrt(8) = (A053004+A062539)/A010466. - Gleb Koloskov, Jun 29 2021

A337354 a(n) is the numerator of Product_{i=0..n-1} (n-i)^((-1)^ceiling(i/2)).

Original entry on oeis.org

1, 2, 3, 2, 5, 9, 7, 40, 45, 7, 308, 48, 975, 539, 88, 1664, 1105, 24255, 13376, 56576, 41769, 48279, 55936, 226304, 348075, 370139, 671232, 870400, 2082925, 4283037, 13872128, 80773120, 343682625, 4023459, 1553678336, 1900544, 14411758075, 59457783, 1471905792, 1406402560
Offset: 1

Author

Devansh Singh, Aug 24 2020

Keywords

Comments

a(n) is the numerator of (n/(n-1)) * ((n-3)/(n-2)) * ((n-4)/(n-5)) ...

Examples

			a(n)/A337355(n) equals 1, 2, 3/2, 2/3, 5/6, 9/5, 7/5, 40/63, 45/56, 7/4 ...
a(4) = numerator of (4*1)/(3*2) = numerator of 2/3 = 2.
a(5) = numerator of (5*2)/(4*3) = numerator of 5/6 = 5.
                      12  *   9*8  *  5*4  *  1
a(12) = numerator of --------------------------- = 48.
                        11*10  *  7*6  *  3*2
		

Crossrefs

Cf. A337355 (denominators).

Programs

  • PARI
    a(n) = {numerator(prod(i=0, n-1, (n-i)^(-1)^((i+1)\2)))} \\ Andrew Howroyd, Aug 24 2020

Formula

a(n) = numerator of (n*A337355(n-2))/(a(n-2)*(n-1)) for n>=3.
Conjecture: a(4*n)/A337355(4*n) ~ 0.5990701173677... (=A076390). - Andrew Howroyd, Aug 25 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Aug 25 2020
Showing 1-10 of 10 results.