cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A378013 Decimal expansion of A^2, where A is the lemniscate constant (A085565).

Original entry on oeis.org

1, 7, 1, 8, 7, 9, 6, 4, 5, 4, 5, 0, 5, 0, 9, 3, 2, 0, 6, 8, 7, 2, 5, 2, 3, 9, 4, 4, 9, 5, 2, 6, 3, 9, 2, 9, 9, 4, 7, 5, 2, 1, 4, 1, 1, 2, 9, 5, 4, 7, 9, 0, 2, 2, 4, 0, 6, 8, 6, 2, 1, 9, 7, 2, 8, 8, 4, 0, 0, 0, 8, 1, 9, 9, 0, 0, 2, 7, 8, 9, 1, 3, 1, 4, 5, 0, 7, 9, 1, 8, 9, 4, 0, 5, 3, 2, 5, 6, 9, 2
Offset: 1

Views

Author

Vincenzo Librandi, Nov 14 2024

Keywords

Examples

			1.71879645450509320687252394495...
		

Crossrefs

Cf. A085565.

Programs

  • Magma
    C := ComplexField(); [(Gamma(1/4)^2/(4*Sqrt(2*Pi(C))))^2];
    
  • Mathematica
    RealDigits[EllipticK[-1]^2,10,100][[1]]
  • PARI
    ellK(I)^2 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals A085565^2.
Equals Gamma(1/4)^4 / (32*Pi). - Vaclav Kotesovec, Nov 14 2024

A000796 Decimal expansion of Pi (or digits of Pi).

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0, 5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8, 1, 6, 4, 0, 6, 2, 8, 6, 2, 0, 8, 9, 9, 8, 6, 2, 8, 0, 3, 4, 8, 2, 5, 3, 4, 2, 1, 1, 7, 0, 6, 7, 9, 8, 2, 1, 4
Offset: 1

Comments

Sometimes called Archimedes's constant.
Ratio of a circle's circumference to its diameter.
Also area of a circle with radius 1.
Also surface area of a sphere with diameter 1.
A useful mnemonic for remembering the first few terms: How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics ...
Also ratio of surface area of sphere to one of the faces of the circumscribed cube. Also ratio of volume of a sphere to one of the six inscribed pyramids in the circumscribed cube. - Omar E. Pol, Aug 09 2012
Also surface area of a quarter of a sphere of radius 1. - Omar E. Pol, Oct 03 2013
Also the area under the peak-shaped even function f(x)=1/cosh(x). Proof: for the upper half of the integral, write f(x) = (2*exp(-x))/(1+exp(-2x)) = 2*Sum_{k>=0} (-1)^k*exp(-(2k+1)*x) and integrate term by term from zero to infinity. The result is twice the Gregory series for Pi/4. - Stanislav Sykora, Oct 31 2013
A curiosity: a 144 X 144 magic square of 7th powers was recently constructed by Toshihiro Shirakawa. The magic sum = 3141592653589793238462643383279502884197169399375105, which is the concatenation of the first 52 digits of Pi. See the MultiMagic Squares link for details. - Christian Boyer, Dec 13 2013 [Comment revised by N. J. A. Sloane, Aug 27 2014]
x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 25 2013
Also diameter of a sphere whose surface area equals the volume of the circumscribed cube. - Omar E. Pol, Jan 13 2014
From Daniel Forgues, Mar 20 2015: (Start)
An interesting anecdote about the base-10 representation of Pi, with 3 (integer part) as first (index 1) digit:
358 0
359 3
360 6
361 0
362 0
And the circle is customarily subdivided into 360 degrees (although Pi radians yields half the circle)...
(End)
Sometimes referred to as Archimedes's constant, because the Greek mathematician computed lower and upper bounds of Pi by drawing regular polygons inside and outside a circle. In Germany it was called the Ludolphian number until the early 20th century after the Dutch mathematician Ludolph van Ceulen (1540-1610), who calculated up to 35 digits of Pi in the late 16th century. - Martin Renner, Sep 07 2016
As of the beginning of 2019 more than 22 trillion decimal digits of Pi are known. See the Wikipedia article "Chronology of computation of Pi". - Harvey P. Dale, Jan 23 2019
On March 14, 2019, Emma Haruka Iwao announced the calculation of 31.4 trillion digits of Pi using Google Cloud's infrastructure. - David Radcliffe, Apr 10 2019
Also volume of three quarters of a sphere of radius 1. - Omar E. Pol, Aug 16 2019
On August 5, 2021, researchers from the University of Applied Sciences of the Grisons in Switzerland announced they had calculated 62.8 trillion digits. Guinness World Records has not verified this yet. - Alonso del Arte, Aug 23 2021
The Hermite-Lindemann (1882) theorem states, that if z is a nonzero algebraic number, then e^z is a transcendent number. The transcendence of Pi then results from Euler's relation: e^(i*Pi) = -1. - Peter Luschny, Jul 21 2023
The 10000 words of the book "Not A Wake" by Michael Keith, written in Pilish, match in length the first 10000 digits of Pi. - Paolo Xausa, Aug 07 2025

Examples

			3.1415926535897932384626433832795028841971693993751058209749445923078164062\
862089986280348253421170679821480865132823066470938446095505822317253594081\
284811174502841027019385211055596446229489549303819...
		

References

  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.
  • J. Arndt & C. Haenel, Pi Unleashed, Springer NY 2001.
  • P. Beckmann, A History of Pi, Golem Press, Boulder, CO, 1977.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 396.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 237-239.
  • J.-P. Delahaye, Le fascinant nombre pi, Pour la Science, Paris 1997.
  • P. Eyard and J.-P. Lafon, The Number Pi, Amer. Math. Soc., 2004.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.4.
  • Le Petit Archimede, Special Issue On Pi, Supplement to No. 64-5, May 1980 ADCS Amiens.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equations 1:7:1, 1:7:2 at pages 12-13.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 48-55.

Crossrefs

Cf. A001203 (continued fraction).
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), this sequence (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A224750 (b=26), A224751 (b=27), A060707 (b=60). - Jason Kimberley, Dec 06 2012
Decimal expansions of expressions involving Pi: A002388 (Pi^2), A003881 (Pi/4), A013661 (Pi^2/6), A019692 (2*Pi=tau), A019727 (sqrt(2*Pi)), A059956 (6/Pi^2), A060294 (2/Pi), A091925 (Pi^3), A092425 (Pi^4), A092731 (Pi^5), A092732 (Pi^6), A092735 (Pi^7), A092736 (Pi^8), A163973 (Pi/log(2)).
Cf. A001901 (Pi/2; Wallis), A002736 (Pi^2/18; Euler), A007514 (Pi), A048581 (Pi; BBP), A054387 (Pi; Newton), A092798 (Pi/2), A096954 (Pi/4; Machin), A097486 (Pi), A122214 (Pi/2), A133766 (Pi/4 - 1/2), A133767 (5/6 - Pi/4), A166107 (Pi; MGL).

Programs

  • Haskell
    -- see link: Literate Programs
    import Data.Char (digitToInt)
    a000796 n = a000796_list (n + 1) !! (n + 1)
    a000796_list len = map digitToInt $ show $ machin' `div` (10 ^ 10) where
       machin' = 4 * (4 * arccot 5 unity - arccot 239 unity)
       unity = 10 ^ (len + 10)
       arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
         arccot' x unity summa xpow n sign
          | term == 0 = summa
          | otherwise = arccot'
            x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
          where term = xpow `div` n
    -- Reinhard Zumkeller, Nov 24 2012
    
  • Haskell
    -- See Niemeijer link and also Gibbons link.
    a000796 n = a000796_list !! (n-1) :: Int
    a000796_list = map fromInteger $ piStream (1, 0, 1)
       [(n, a*d, d) | (n, d, a) <- map (\k -> (k, 2 * k + 1, 2)) [1..]] where
       piStream z xs'@(x:xs)
         | lb /= approx z 4 = piStream (mult z x) xs
         | otherwise = lb : piStream (mult (10, -10 * lb, 1) z) xs'
         where lb = approx z 3
               approx (a, b, c) n = div (a * n + b) c
               mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
    -- Reinhard Zumkeller, Jul 14 2013, Jun 12 2013
    
  • Macsyma
    py(x) := if equal(6,6+x^2) then 2*x else (py(x:x/3),3*%%-4*(%%-x)^3); py(3.); py(dfloat(%)); block([bfprecision:35], py(bfloat(%))) /* Bill Gosper, Sep 09 2002 */
    
  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi))); // Bruno Berselli, Mar 12 2013
    
  • Maple
    Digits := 110: Pi*10^104:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Oct 29 2019
  • Mathematica
    RealDigits[ N[ Pi, 105]] [[1]]
    Table[ResourceFunction["NthDigit"][Pi, n], {n, 1, 102}] (* Joan Ludevid, Jun 22 2022; easy to compute a(10000000)=7 with this function; requires Mathematica 12.0+ *)
  • PARI
    { default(realprecision, 20080); x=Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b000796.txt", n, " ", d)); } \\ Harry J. Smith, Apr 15 2009
    
  • PARI
    A796=[]; A000796(n)={if(n>#A796, localprec(n*6\5+29); A796=digits(Pi\.1^(precision(Pi)-3))); A796[n]} \\ NOTE: as the other programs, this returns the n-th term of the sequence, with n = 1, 2, 3, ... and not n = 1, 0, -1, -2, .... - M. F. Hasler, Jun 21 2022
    
  • PARI
    first(n)= default(realprecision, n+10); digits(floor(Pi*10^(n-1))) \\ David A. Corneth, Jun 21 2022
    
  • PARI
    lista(nn, p=20)= {my(u=10^(nn+p+1), f(x, u)=my(n=1, q=u\x, r=q, s=1, t); while(t=(q\=(x*x))\(n+=2), r+=(s=-s)*t); r*4); digits((4*f(5, u)-f(239, u))\10^(p+2)); } \\ Machin-like, with p > the maximal number of consecutive 9-digits to be expected (A048940) - Ruud H.G. van Tol, Dec 26 2024
    
  • Python
    from sympy import pi, N; print(N(pi, 1000)) # David Radcliffe, Apr 10 2019
    
  • Python
    from mpmath import mp
    def A000796(n):
        if n >= len(A000796.str): mp.dps = n*6//5+50; A000796.str = str(mp.pi-5/mp.mpf(10)**mp.dps)
        return int(A000796.str[n if n>1 else 0])
    A000796.str = '' # M. F. Hasler, Jun 21 2022
    
  • SageMath
    m=125
    x=numerical_approx(pi, digits=m+5)
    a=[ZZ(i) for i in x.str(skip_zeroes=True) if i.isdigit()]
    a[:m] # G. C. Greubel, Jul 18 2023

Formula

Pi = 4*Sum_{k>=0} (-1)^k/(2k+1) [Madhava-Gregory-Leibniz, 1450-1671]. - N. J. A. Sloane, Feb 27 2013
From Johannes W. Meijer, Mar 10 2013: (Start)
2/Pi = (sqrt(2)/2) * (sqrt(2 + sqrt(2))/2) * (sqrt(2 + sqrt(2 + sqrt(2)))/2) * ... [Viete, 1593]
2/Pi = Product_{k>=1} (4*k^2-1)/(4*k^2). [Wallis, 1655]
Pi = 3*sqrt(3)/4 + 24*(1/12 - Sum_{n>=2} (2*n-2)!/((n-1)!^2*(2*n-3)*(2*n+1)*2^(4*n-2))). [Newton, 1666]
Pi/4 = 4*arctan(1/5) - arctan(1/239). [Machin, 1706]
Pi^2/6 = 3*Sum_{n>=1} 1/(n^2*binomial(2*n,n)). [Euler, 1748]
1/Pi = (2*sqrt(2)/9801) * Sum_{n>=0} (4*n)!*(1103+26390*n)/((n!)^4*396^(4*n)). [Ramanujan, 1914]
1/Pi = 12*Sum_{n>=0} (-1)^n*(6*n)!*(13591409 + 545140134*n)/((3*n)!*(n!)^3*(640320^3)^(n+1/2)). [David and Gregory Chudnovsky, 1989]
Pi = Sum_{n>=0} (1/16^n) * (4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)). [Bailey-Borwein-Plouffe, 1989] (End)
Pi = 4 * Sum_{k>=0} 1/(4*k+1) - 1/(4*k+3). - Alexander R. Povolotsky, Dec 25 2008
Pi = 4*sqrt(-1*(Sum_{n>=0} (i^(2*n+1))/(2*n+1))^2). - Alexander R. Povolotsky, Jan 25 2009
Pi = Integral_{x=-oo..oo} dx/(1+x^2). - Mats Granvik and Gary W. Adamson, Sep 23 2012
Pi - 2 = 1/1 + 1/3 - 1/6 - 1/10 + 1/15 + 1/21 - 1/28 - 1/36 + 1/45 + ... [Jonas Castillo Toloza, 2007], that is, Pi - 2 = Sum_{n>=1} (1/((-1)^floor((n-1)/2)*(n^2+n)/2)). - José de Jesús Camacho Medina, Jan 20 2014
Pi = 3 * Product_{t=img(r),r=(1/2+i*t) root of zeta function} (9+4*t^2)/(1+4*t^2) <=> RH is true. - Dimitris Valianatos, May 05 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Pi = Sum_{k>=1} (3^k - 1)*zeta(k+1)/4^k.
Pi = 2*Product_{k>=2} sec(Pi/2^k).
Pi = 2*Integral_{x>=0} sin(x)/x dx. (End)
Pi = 2^{k + 1}*arctan(sqrt(2 - a_{k - 1})/a_k) at k >= 2, where a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2). - Sanjar Abrarov, Feb 07 2017
Pi = Integral_{x = 0..2} sqrt(x/(2 - x)) dx. - Arkadiusz Wesolowski, Nov 20 2017
Pi = lim_{n->oo} 2/n * Sum_{m=1,n} ( sqrt( (n+1)^2 - m^2 ) - sqrt( n^2 - m^2 ) ). - Dimitri Papadopoulos, May 31 2019
From Peter Bala, Oct 29 2019: (Start)
Pi = Sum_{n >= 0} 2^(n+1)/( binomial(2*n,n)*(2*n + 1) ) - Euler.
More generally, Pi = (4^x)*x!/(2*x)! * Sum_{n >= 0} 2^(n+1)*(n+x)!*(n+2*x)!/(2*n+2*x+1)! = 2*4^x*x!^2/(2*x+1)! * hypergeom([2*x+1,1], [x+3/2], 1/2), valid for complex x not in {-1,-3/2,-2,-5/2,...}. Here, x! is shorthand notation for the function Gamma(x+1). This identity may be proved using Gauss's second summation theorem.
Setting x = 3/4 and x = -1/4 (resp. x = 1/4 and x = -3/4) in the above identity leads to series representations for the constant A085565 (resp. A076390). (End)
Pi = Im(log(-i^i)) = log(i^i)*(-2). - Peter Luschny, Oct 29 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals 2 + Integral_{x=0..1} arccos(x)^2 dx.
Equals Integral_{x=0..oo} log(1 + 1/x^2) dx.
Equals Integral_{x=0..oo} log(1 + x^2)/x^2 dx.
Equals Integral_{x=-oo..oo} exp(x/2)/(exp(x) + 1) dx. (End)
Equals 4*(1/2)!^2 = 4*Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
From Peter Bala, Dec 08 2021: (Start)
Pi = 32*Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9))= 384*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)*(4*n^2 - 9)*(4*n^2 - 25)).
More generally, it appears that for k = 1,2,3,..., Pi = 16*(2*k)!*Sum_{n >= 1} (-1)^(n+k+1)*n^2/((4*n^2 - 1)* ... *(4*n^2 - (2*k+1)^2)).
Pi = 32*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^2 = 768*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2*(4*n^2 - 9)^2).
More generally, it appears that for k = 0,1,2,..., Pi = 16*Catalan(k)*(2*k)!*(2*k+2)!*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2* ... *(4*n^2 - (2*k+1)^2)^2).
Pi = (2^8)*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^4 = (2^17)*(3^5)*Sum_{n >= 2} (-1)^n*n^2*(n^2 - 1)/((4*n^2 - 1)^4*(4*n^2 - 9)^4) = (2^27)*(3^5)*(5^5)* Sum_{n >= 3} (-1)^(n+1)*n^2*(n^2 - 1)*(n^2 - 4)/((4*n^2 - 1)^4*(4*n^2 - 9)^4*(4*n^2 - 25)^4). (End)
For odd n, Pi = (2^(n-1)/A001818((n-1)/2))*gamma(n/2)^2. - Alan Michael Gómez Calderón, Mar 11 2022
Pi = 4/phi + Sum_{n >= 0} (1/phi^(12*n)) * ( 8/((12*n+3)*phi^3) + 4/((12*n+5)*phi^5) - 4/((12*n+7)*phi^7) - 8/((12*n+9)*phi^9) - 4/((12*n+11)*phi^11) + 4/((12*n+13)*phi^13) ) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, May 16 2022
Pi = sqrt(3)*(27*S - 36)/24, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Integral_{x=0..1} 1/sqrt(x-x^2) dx. - Michal Paulovic, Sep 24 2023
From Peter Bala, Oct 28 2023: (Start)
Pi = 48*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*(6*n + 5)).
More generally, it appears that for k >= 0 we have Pi = A(k) + B(k)*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 5)), where A(k) is a rational approximation to Pi and B(k) = (3 * 2^(3*k+3) * (3*k + 2)!) / (2^(3*k+1) - (-1)^k). The first few values of A(k) for k >= 0 are [0, 256/85, 65536/20955, 821559296/261636375, 6308233216/2008080987, 908209489444864/289093830828075, ...].
Pi = 16/5 - (288/5)*Sum_{n >= 0} (-1)^n * (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 9)).
More generally, it appears that for k >= 0 we have Pi = C(k) + D(k)*Sum_{n >= 0} (-1)^n* (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 3)), where C(k) and D(k) are rational numbers. The case k = 0 is the Madhava-Gregory-Leibniz series for Pi.
Pi = 168/53 + (288/53)*Sum_{n >= 0} (-1)^n * (42*n^2 + 25*n)/((6*n + 1)*(6*n + 3)*(6*n + 5)*(6*n + 7)).
More generally, it appears that for k >= 1 we have Pi = E(k) + F(k)*Sum_{n >= 0} (-1)^n * (6*(6*k + 1)*n^2 + (24*k + 1)*n)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 1)), where E(k) and F(k) are rational numbers. (End)
From Peter Bala, Nov 10 2023: (Start)
The series representation Pi = 4 * Sum_{k >= 0} 1/(4*k + 1) - 1/(4*k + 3) given above by Alexander R. Povolotsky, Dec 25 2008, is the case n = 0 of the more general result (obtained by the WZ method): for n >= 0, there holds
Pi = Sum_{j = 0.. n-1} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) + 8*(n+1)!*Sum_{k >= 0} 1/((4*k + 1)*(4*k + 3)*...*(4*k + 2*n + 3)).
Letting n -> oo gives the rapidly converging series Pi = Sum_{j >= 0} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) due to Euler.
More generally, it appears that for n >= 1, Pi = 1/(2*n-1)!!^2 * Sum_{j >= 0} (Product_{i = 0..2*n-1} j - i) * 2^(j+1)/((2*j + 1)*binomial(2*j,j)).
For any integer n, Pi = (-1)^n * 4 * Sum_{k >= 0} 1/(4*k + 1 + 2*n) - 1/(4*k + 3 - 2*n). (End)
Pi = Product_{k>=1} ((k^3*(k + 2)*(2*k + 1)^2)/((k + 1)^4*(2*k - 1)^2))^k. - Antonio Graciá Llorente, Jun 13 2024
Equals Integral_{x=0..2} sqrt(8 - x^2) dx - 2 (see Ambrisi and Rizzi). - Stefano Spezia, Jul 21 2024
Equals 3 + 4*Sum_{k>0} (-1)^(k+1)/(4*k*(1+k)*(1+2*k)) (see Wells at p. 53). - Stefano Spezia, Aug 31 2024
Equals 4*Integral_{x=0..1} sqrt(1 - x^2) dx = lim_{n->oo} (4/n^2)*Sum_{k=0..n} sqrt(n^2 - k^2) (see Finch). - Stefano Spezia, Oct 19 2024
Equals Beta(1/2,1/2) (see Shamos). - Stefano Spezia, Jun 03 2025
From Kritsada Moomuang, Jun 18 2025: (Start)
Equals 2 + Integral_{x=0..1} 1/(sqrt(x)*(1 + sqrt(1 - x))) dx.
Equals 2 + Integral_{x=0..1} log(1 + sqrt(1 - x))/sqrt(x) dx. (End)
Pi = 2*arccos(1/phi) + arccos(1/phi^3) = 4*arcsin(1/phi) + 2*arcsin(1/phi^3) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, Jul 02 2025
Pi = Sum_{n >= 0} zeta(2*n)*(2^(2*n - 1) - 1)/2^(4*n - 3). - Andrea Pinos, Jul 29 2025

Extensions

Additional comments from William Rex Marshall, Apr 20 2001

A062539 Decimal expansion of the Lemniscate constant or Gauss's constant.

Original entry on oeis.org

2, 6, 2, 2, 0, 5, 7, 5, 5, 4, 2, 9, 2, 1, 1, 9, 8, 1, 0, 4, 6, 4, 8, 3, 9, 5, 8, 9, 8, 9, 1, 1, 1, 9, 4, 1, 3, 6, 8, 2, 7, 5, 4, 9, 5, 1, 4, 3, 1, 6, 2, 3, 1, 6, 2, 8, 1, 6, 8, 2, 1, 7, 0, 3, 8, 0, 0, 7, 9, 0, 5, 8, 7, 0, 7, 0, 4, 1, 4, 2, 5, 0, 2, 3, 0, 2, 9, 5, 5, 3, 2, 9, 6, 1, 4, 2, 9, 0, 9, 3, 4, 4, 6, 1, 3
Offset: 1

Author

Jason Earls, Jun 25 2001

Keywords

Examples

			2.622057554292119810464839589891119413682754951431623162816821703...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.3 and 6.2, pp. 99, 420.

Crossrefs

Equals A000796/A053004 (see PARI script).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (1/2)*Sqrt(2*Pi(R)^3)/Gamma(3/4)^2; // G. C. Greubel, Oct 07 2018
  • Maple
    evalf((1/2)*sqrt(2*Pi^3)/GAMMA(3/4)^2,120); # Muniru A Asiru, Oct 08 2018
    evalf(1/2*GAMMA(1/4)*GAMMA(1/2)/GAMMA(3/4),120); # Martin Renner, Aug 16 2019
    evalf(1/2*Beta(1/4,1/2),120); # Martin Renner, Aug 16 2019
    evalf(2*int(1/sqrt(1-x^4),x=0..1),120); # Martin Renner, Aug 16 2019
  • Mathematica
    RealDigits[Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2, 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *)
  • PARI
    print(1/2*Pi^(3/2)/gamma(3/4)^2*2^(1/2))
    
  • PARI
    allocatemem(932245000); default(realprecision, 5080); x=Pi^(3/2)*sqrt(2)/(2*gamma(3/4)^2); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062539.txt", n, " ", d)); \\ Harry J. Smith, Jun 20 2009
    
  • PARI
    Pi/agm(1,sqrt(2)) \\ Charles R Greathouse IV, Feb 04 2015
    
  • PARI
    intnum(x=0,Pi, 1/sqrt(1 + sin(x)^2)) \\ Charles R Greathouse IV, Feb 04 2025
    

Formula

Equals (1/2)*sqrt(2*Pi^3)/Gamma(3/4)^2.
A093341 multiplied by A002193. - R. J. Mathar, Aug 28 2013
From Martin Renner, Aug 16 2019: (Start)
Equals 2*Integral_{x=0..1} 1/sqrt(1-x^4) dx.
Equals 1/2*B(1/4,1/2) with Beta function B(x,y) = Gamma(x)*Gamma(y)/Gamma(x+y). (End)
Equals Pi/AGM(1, sqrt(2)). - Jean-François Alcover, Feb 28 2021
Equals 2*hypergeom([1/2, 1/4], [5/4], 1). - Peter Bala, Mar 02 2022
Equals (1/2)*A064853 = 2*A085565. - Amiram Eldar, May 04 2022
Equals Pi*A014549. - Hugo Pfoertner, Jun 28 2024
Equals Integral_{x=0..Pi} 1/sqrt(1 + sin(x)^2) dx = EllipticK(-1) (see Finch at p. 420). - Stefano Spezia, Dec 15 2024
Equals Gamma(1/4)^2 / (sqrt(Pi)*2^(3/2)). - Vaclav Kotesovec, Apr 26 2025
Equals (161*6440^(1/4))/(2*Sum_{k>=0} N(k)/D(k)) with N(k) = Pochhammer(1/8,k) * Pochhammer(5/8,k) * (275+8640*k) and D(k) = (k!)^2*25921^k [Jorge Zuniga, 2023].

A053004 Decimal expansion of AGM(1,sqrt(2)).

Original entry on oeis.org

1, 1, 9, 8, 1, 4, 0, 2, 3, 4, 7, 3, 5, 5, 9, 2, 2, 0, 7, 4, 3, 9, 9, 2, 2, 4, 9, 2, 2, 8, 0, 3, 2, 3, 8, 7, 8, 2, 2, 7, 2, 1, 2, 6, 6, 3, 2, 1, 5, 6, 5, 1, 5, 5, 8, 2, 6, 3, 6, 7, 4, 9, 5, 2, 9, 4, 6, 4, 0, 5, 2, 1, 4, 1, 4, 3, 9, 1, 5, 6, 7, 0, 8, 3, 5, 8, 8, 5, 5, 5, 6, 4, 8, 9, 7, 9, 3, 3, 8, 9, 3, 7, 5, 9, 0
Offset: 1

Author

N. J. A. Sloane, Feb 21 2000

Keywords

Comments

AGM(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0=a, b_0=b, a_{n+1}=(a_n+b_n)/2, b_{n+1}=sqrt(a_n*b_n).

Examples

			1.19814023473559220743992249228...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 195.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, page 5.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 420.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 92.

Programs

  • Maple
    evalf(GaussAGM(1, sqrt(2)), 144);  # Alois P. Heinz, Jul 05 2023
  • Mathematica
    RealDigits[ N[ ArithmeticGeometricMean[1, Sqrt[2]], 105]][[1]] (* Jean-François Alcover, Jan 30 2012 *)
    RealDigits[N[(1+Sqrt[2])Pi/(4EllipticK[17-12Sqrt[2]]), 105]][[1]] (* Jean-François Alcover, Jun 02 2019 *)
  • PARI
    default(realprecision, 20080); x=agm(1, sqrt(2)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b053004.txt", n, " ", d)) \\ Harry J. Smith, Apr 20 2009
    
  • PARI
    2*real(agm(1, I)/(1+I)) \\ Michel Marcus, Jul 26 2018
    
  • Python
    from mpmath import mp, agm, sqrt
    mp.dps=106
    print([int(z) for z in list(str(agm(1, sqrt(2))).replace('.', '')[:-1])]) # Indranil Ghosh, Jul 11 2017

Formula

Equals Pi/(2*A085565). - Nathaniel Johnston, May 26 2011
Equals Integral_{x=0..Pi/2} sqrt(sin(x)) or Integral_{x=0..1} sqrt(x/(1-x^2)). - Jean-François Alcover, Apr 29 2013 [cf. Boros & Moll p. 195]
Equals Product_{n>=1} (1+1/A033566(n)) and also 2*AGM(1, i)/(1+i) where i is the imaginary unit. - Dimitris Valianatos, Oct 03 2016
Conjecturally equals 1/( Sum_{n = -infinity..infinity} exp(-Pi*(n+1/2)^2 ) )^2. Cf. A096427. - Peter Bala, Jun 10 2019
From Amiram Eldar, Aug 26 2020: (Start)
Equals 2 * A076390.
Equals Integral_{x=0..Pi} sin(x)^2/sqrt(1 + sin(x)^2) dx. (End)
Equals sqrt(2/Pi)*Gamma(3/4)^2 = Integral_{x = 0..1} 1/(1 - x^2)^(1/4) dx = Pi/Integral_{x = 0..1} 1/(1 - x^2)^(3/4) dx. - Peter Bala, Jan 05 2022
From Peter Bala, Mar 02 2022: (Start)
Equals 2*Integral_{x = 0..1} x^2/sqrt(1 - x^4) dx.
Equals 1 - Integral_{x = 0..1} (sqrt(1 - x^4) - 1)/x^2 dx.
Equals hypergeom([-1/2, -1/4], [3/4], 1) = 1 + Sum_{n >= 0} 1/(4*n + 3)*Catalan(n)*(1/2^(2*n+1)). Cf. A096427. (End)

Extensions

More terms from James Sellers, Feb 22 2000

A175573 Decimal expansion of Pi^(1/4)/Gamma(3/4).

Original entry on oeis.org

1, 0, 8, 6, 4, 3, 4, 8, 1, 1, 2, 1, 3, 3, 0, 8, 0, 1, 4, 5, 7, 5, 3, 1, 6, 1, 2, 1, 5, 1, 0, 2, 2, 3, 4, 5, 7, 0, 7, 0, 2, 0, 5, 7, 0, 7, 2, 4, 5, 2, 1, 8, 8, 8, 5, 9, 2, 0, 7, 9, 0, 3, 1, 5, 9, 8, 1, 8, 5, 6, 7, 3, 2, 2, 6, 7, 1, 0, 9, 7, 9, 5, 9, 6, 0, 5, 6, 1, 6, 1, 8, 4, 8, 9, 6, 7, 9, 7, 6, 4, 0, 3, 7, 4, 1
Offset: 1

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Entry 34 a of chapter 11 of Ramanujan's second notebook. Entry 34 b is A085565.

Examples

			1.0864348112133080145753161...
		

Programs

  • Magma
    C := ComplexField(); [(Pi(C))^(1/4)/Gamma(3/4)]; // G. C. Greubel, Nov 05 2017
  • Maple
    Pi^(1/4)/GAMMA(3/4) ; evalf(%) ;
  • Mathematica
    RealDigits[ Pi^(1/4)/Gamma[3/4], 10, 105][[1]] (* Jean-François Alcover, Jul 04 2013 *)
  • PARI
    Pi^(1/4)/gamma(3/4) \\ G. C. Greubel, Nov 05 2017
    
  • PARI
    2*suminf(k=0,exp(-Pi)^(k^2))-1 \\ Hugo Pfoertner, Sep 17 2018
    

Formula

Equals A092040 / A068465.
Equals Sum_{n=-oo..oo} exp(-Pi*n^2), or also EllipticTheta(3, 0, exp(-Pi)). - Jean-François Alcover, Jul 04 2013
Equals sqrt(A175574). - Amiram Eldar, Jul 04 2023
Equals Gamma(1/4)/(sqrt(2)*Pi^(3/4)). - Vaclav Kotesovec, Jul 04 2023
Equals Product_{k>=1} tanh((1/2 + i/2)*Pi*k), i=sqrt(-1). - _Antonio Graciá Llorente, Mar 20 2024
Equals Product_{k>=0} (1/2)*(((k+1/2)/(k+1))^(1/2)+((k+1)/(k+1/2))^(1/2)). - Antonio Graciá Llorente, Jul 23 2024
Equals (1/A096427)^2 (see Spanier and Oldham at p. 258). - Stefano Spezia, Dec 31 2024
Equals 2*A319332 = 1/A327995. - Hugo Pfoertner, Dec 31 2024

A076390 Decimal expansion of lemniscate constant B.

Original entry on oeis.org

5, 9, 9, 0, 7, 0, 1, 1, 7, 3, 6, 7, 7, 9, 6, 1, 0, 3, 7, 1, 9, 9, 6, 1, 2, 4, 6, 1, 4, 0, 1, 6, 1, 9, 3, 9, 1, 1, 3, 6, 0, 6, 3, 3, 1, 6, 0, 7, 8, 2, 5, 7, 7, 9, 1, 3, 1, 8, 3, 7, 4, 7, 6, 4, 7, 3, 2, 0, 2, 6, 0, 7, 0, 7, 1, 9, 5, 7, 8, 3, 5, 4, 1, 7, 9, 4, 2, 7, 7, 8, 2, 4, 4, 8, 9, 6, 6, 9, 4, 6, 8, 7, 9, 5, 3, 6
Offset: 0

Author

Robert G. Wilson v, Oct 09 2002

Keywords

Comments

Also decimal expansion of AGM(1,i)/(1+i).
See A085565 for the lemniscate constant A. - Peter Bala, Oct 25 2019
Also the ratio of height to diameter of a "Mylar balloon" (see Paulsen). - Jeremy Tan, May 05 2021

Examples

			0.599070117367796103719961246140161939113606331607825779131837476473202607...
AGM(1,i) = 0.59907011736779610371... + 0.59907011736779610371...*i
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley, 1998.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 421.

Crossrefs

Programs

Formula

Equals (2*Pi)^(-1/2)*GAMMA(3/4)^2.
Equals ee/sqrt(2)-1/2*sqrt(2*ee^2-Pi) where ee = EllipticE(1/2), or also Product_{m>=1} ((2*m)/(2*m-1))^(-1)^m. - Jean-François Alcover, Sep 02 2014, after Steven Finch.
Equals sqrt(2) * Pi^(3/2) / GAMMA(1/4)^2. - Vaclav Kotesovec, Oct 03 2019
From Peter Bala, Oct 25 2019: (Start)
Equals 1 - 1/3 - 1/(3*7) - (1*3)/(3*7*11) - (1*3*5)/(3*7*11*15) - ... = hypergeom([-1/2,1],[3/4],1/2) by Gauss’s second summation theorem.
Equivalently, define a sequence of rational numbers r(n) recursively by r(n) = (2*n - 3)/(4*n - 1)*r(n-1) with r(0) = 1. Then the constant equals Sum_{n >= 0} r(n) = 1 - 1/3 - 1/21 - 1/77 - 1/231 - 1/627 - 3/4807 - 1/3933 - 13/121923 - 13/284487 - 17/853461 - .... The partial sum of the series to 100 terms gives the constant correct to 32 decimal places.
Equals (1/3) + (1*3)/(3*7) + (1*3*5)/(3*7*11) + ... = (1/3) * hypergeom ([3/2,1],[7/4],1/2). (End)
Equals (1/2) * A053004. - Amiram Eldar, Aug 26 2020
Equals (2/3) * 1/A243340. - Peter Bala, Mar 25 2024
Equals Product_{n>=1} exp(((-1)^n*beta(n))/n), where beta(n) is the Dirichlet beta function. - Antonio Graciá Llorente, Oct 16 2024
Equals Integral_{x=0..1} x^2/sqrt(1 - x^4) dx = sqrt(Pi)*Gamma(7/4)/(3*Gamma(5/4)) (see Finch). - Stefano Spezia, Dec 15 2024

Extensions

Edited by N. J. A. Sloane, Nov 01 2008 at the suggestion of R. J. Mathar

A154739 Decimal expansion of sqrt(1 - 1/sqrt(2)), the abscissa of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.

Original entry on oeis.org

5, 4, 1, 1, 9, 6, 1, 0, 0, 1, 4, 6, 1, 9, 6, 9, 8, 4, 3, 9, 9, 7, 2, 3, 2, 0, 5, 3, 6, 6, 3, 8, 9, 4, 2, 0, 0, 6, 1, 0, 7, 2, 0, 6, 3, 3, 7, 8, 0, 1, 5, 4, 4, 4, 6, 8, 1, 2, 9, 7, 0, 9, 5, 6, 5, 2, 9, 8, 8, 9, 7, 3, 5, 4, 1, 0, 1, 2, 6, 6, 6, 4, 7, 7, 8, 2, 6, 1, 4, 9, 5
Offset: 0

Author

Stuart Clary, Jan 14 2009

Keywords

Comments

A root of 2*x^4 - 4*x^2 + 1 = 0.

Examples

			0.541196100146196984399723205366...
		

References

  • C. L. Siegel, Topics in Complex Function Theory, Volume I: Elliptic Functions and Uniformization Theory, Wiley-Interscience, 1969, page 5.

Crossrefs

Cf. A154743 for the ordinate and A154747 for the radius vector.
Cf. A154740, A154741 and A154742 for the continued fraction and the numerators and denominators of the convergents.
Cf. A085565 for 1.311028777..., the first-quadrant arc length of the unit lemniscate.

Programs

  • Mathematica
    nmax = 1000; First[ RealDigits[ Sqrt[ 1 - 1/Sqrt[2] ], 10, nmax] ]
  • PARI
    sqrt(1 - 1/sqrt(2)) \\ G. C. Greubel, Sep 23 2017
    
  • PARI
    polrootsreal(2*x^4-4*x^2+1)[3] \\ Charles R Greathouse IV, Feb 04 2025

Formula

From Amiram Eldar, Nov 22 2024: (Start)
Equals sqrt(2) * sin(Pi/8) = A002193 * A182168.
Equals Product_{k>=0} (1 - (-1)^k/(4*k+2)) = Product_{k>=1} (1 + (-1)^k/A016825(k)). (End)
Equals 1/A179260 = sqrt(A268682). - Hugo Pfoertner, Nov 22 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A224268 Decimal expansion of Product_{n>=1} (1 - 1/(4n+1)^2).

Original entry on oeis.org

9, 2, 7, 0, 3, 7, 3, 3, 8, 6, 5, 0, 6, 8, 5, 9, 5, 9, 2, 1, 6, 9, 2, 5, 1, 7, 3, 5, 9, 7, 6, 3, 0, 0, 2, 3, 1, 0, 8, 7, 9, 9, 4, 1, 1, 7, 6, 0, 8, 8, 3, 4, 5, 2, 7, 9, 2, 9, 6, 4, 0, 2, 2, 5, 2, 8, 0, 1, 0, 8, 8, 8, 4, 1, 9, 0, 5, 9, 9, 8, 9, 1, 7, 8, 6, 3, 5
Offset: 0

Author

Bruno Berselli, Apr 02 2013

Keywords

Examples

			0.9270373386506859592169251735976300231087994117608834527929640225280...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.

Crossrefs

Cf. product(1-1/(4n+r)^2, n>=1): A096427 (r=-1), A112628 (r=0), A179587-1 (r=2).

Programs

  • Mathematica
    RealDigits[N[Product[1 - 1/(4 n + 1)^2, {n, 1, Infinity}], 90]][[1]] (* or, by the formula: *) RealDigits[Gamma[1/4]^2/(8 Sqrt[Pi]), 10, 90][[1]]
  • PARI
    prodnumrat(1 - 1/(4*n+1)^2, 1) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals Gamma(1/4)^2/(8*sqrt(Pi)) = L/(4*sqrt(2)), where L is the Lemniscate constant (A064853).
From Peter Bala, Feb 26 2019: (Start)
C = (Pi/4)*( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2.
C = (-1)^m*2^(2*m+1)/Catalan(m) * Product_{n >= 1} ( 1 - (4*m + 3)^2/(4*n + 1)^2 ), for m = 0,1,2,....
C = Integral_{x = 0..1} 1/sqrt(1 + x^4) dx.
C = (1/sqrt(2))*Integral_{x = 0..1} 1/sqrt(1 - x^4) dx.
C = (3/2)*Integral_{x = 0..1} sqrt(1 + x^4) dx - sqrt(2)/2.
C = (1/8)*Integral_{x = 0..1} 1/(x - x^2)^(3/4) dx.
C = Sum_{n >= 0} binomial(-1/2,n)/(4*n + 1) = Sum_{n >= 0} binomial(2*n,n)/4^n * 1/(4*n + 1).
C = (1/2)*Sum_{n >= 0} (-1)^n*binomial(-3/4,n)/(4*n + 1).
Continued fraction: 1 - 1/(5 + 20/(1 + 30/(3 + ... + (4*n)*(4*n + 1)/(1 + (4*n + 1)*(4*n + 2)/(3 + ... ))))).
C = A085565/sqrt(2). C = Pi/(4*A096427). (End)
Equals A093341/2 = A327996^2. - Hugo Pfoertner, Oct 31 2024

A064853 Decimal expansion of the Lemniscate constant.

Original entry on oeis.org

5, 2, 4, 4, 1, 1, 5, 1, 0, 8, 5, 8, 4, 2, 3, 9, 6, 2, 0, 9, 2, 9, 6, 7, 9, 1, 7, 9, 7, 8, 2, 2, 3, 8, 8, 2, 7, 3, 6, 5, 5, 0, 9, 9, 0, 2, 8, 6, 3, 2, 4, 6, 3, 2, 5, 6, 3, 3, 6, 4, 3, 4, 0, 7, 6, 0, 1, 5, 8, 1, 1, 7, 4, 1, 4, 0, 8, 2, 8, 5, 0, 0, 4, 6, 0, 5, 9, 1, 0, 6, 5, 9, 2, 2, 8, 5, 8, 1, 8, 6, 8, 9
Offset: 1

Author

Eric W. Weisstein, Sep 22 2001

Keywords

Examples

			5.244115108584239620929679...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Gamma(1/4)^2/Sqrt(2*Pi(R)); // G. C. Greubel, Oct 07 2018
  • Mathematica
    First@RealDigits[ N[ Gamma[ 1/4 ]^2/Sqrt[ 2 Pi ], 102 ] ]
  • PARI
    { allocatemem(932245000); default(realprecision, 5080); x=gamma(1/4)^2/sqrt(2*Pi); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b064853.txt", n, " ", d)); } \\ Harry J. Smith, Jun 20 2009
    
  • PARI
    gamma(1/2)*gamma(1/4)/gamma(3/4) \\ Charles R Greathouse IV, Oct 29 2021
    

Formula

Equals Gamma(1/4)^2/sqrt(2*Pi). - G. C. Greubel, Oct 07 2018
Equals 2*A062539 = 4*A085565. - Amiram Eldar, May 04 2022
From Stefano Spezia, Sep 23 2022: (Start)
Equals 4*Integral_{x=0..Pi/2} 1/sqrt(2*(1 - (1/2)*sin(x)^2)) dx [Gauss, 1799] (see Faulhuber et al.).
Equals 2*sqrt(2)*A093341. (End)

A154747 Decimal expansion of sqrt(sqrt(2) - 1), the radius vector of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.

Original entry on oeis.org

6, 4, 3, 5, 9, 4, 2, 5, 2, 9, 0, 5, 5, 8, 2, 6, 2, 4, 7, 3, 5, 4, 4, 3, 4, 3, 7, 4, 1, 8, 2, 0, 9, 8, 0, 8, 9, 2, 4, 2, 0, 2, 7, 4, 2, 4, 4, 4, 0, 0, 7, 6, 5, 1, 1, 5, 6, 1, 5, 2, 0, 0, 9, 3, 5, 2, 0, 7, 4, 8, 5, 0, 3, 2, 1, 8, 3, 6, 5, 1, 9, 5, 4, 5, 1, 3, 4, 2, 4, 6, 5, 9, 5
Offset: 0

Author

Stuart Clary, Jan 14 2009

Keywords

Comments

A root of r^4 + 2 r^2 - 1 = 0.
Also real part of sqrt(1 + i)^3, where i is the imaginary unit such that i^2 = -1. - Alonso del Arte, Sep 09 2019
From Bernard Schott, Dec 19 2020: (Start)
Length of the shortest line segment which divides a right isosceles triangle with AB = AC = 1 into two parts of equal area; this is the answer to the 2nd problem proposed during the final round of the 18th British Mathematical Olympiad in 1993 (see link BM0 and Gardiner reference).
The length of this shortest line segment IJ with I on a short side and J on the hypotenuse is sqrt(sqrt(2)-1), and AI = AJ = 1/sqrt(sqrt(2)) = A228497 (see link Figure for B.M.O. 1993, Problem 2). (End)
This algebraic number and its negation equal the real roots of the quartic x^4 + 2*x^2 - 1 (minimal polynomial). The imaginary roots are +A278928*i and -A278928*i. - Wolfdieter Lang, Sep 23 2022

Examples

			0.643594252905582624735443437418...
		

References

  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 2, pages 56 and 104-105 (1993).
  • C. L. Siegel, Topics in Complex Function Theory, Volume I: Elliptic Functions and Uniformization Theory, Wiley-Interscience, 1969, page 5

Crossrefs

Cf. A154739 for the abscissa and A154743 for the ordinate.
Cf. A154748, A154749 and A154750 for the continued fraction and the numerators and denominators of the convergents.
Cf. A085565 for 1.311028777..., the first-quadrant arc length of the unit lemniscate.
Cf. A309948 and A309949 for real and imaginary parts of sqrt(1 + i).
Cf. A278928.

Programs

  • Mathematica
    nmax = 1000; First[ RealDigits[ Sqrt[Sqrt[2] - 1], 10, nmax] ]
  • PARI
    sqrt(sqrt(2) - 1) \\ Michel Marcus, Dec 10 2016

Formula

From Peter Bala, Jul 01 2024: (Start)
This constant occurs in the evaluation of Integral_{x = 0..Pi/2} sin^2(x)/(1 + sin^4(x)) dx = Pi/4 * sqrt(sqrt(2) - 1).
Equals (1/2)*Sum_{n >= 0} (-1/16)^n * binomial(4*n+2, 2*n+1) (a slowly converging series). (End)
Equals 2^(3/4)*sin(Pi/8). - Vaclav Kotesovec, Jul 01 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009
Showing 1-10 of 24 results. Next