cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A076390 Decimal expansion of lemniscate constant B.

Original entry on oeis.org

5, 9, 9, 0, 7, 0, 1, 1, 7, 3, 6, 7, 7, 9, 6, 1, 0, 3, 7, 1, 9, 9, 6, 1, 2, 4, 6, 1, 4, 0, 1, 6, 1, 9, 3, 9, 1, 1, 3, 6, 0, 6, 3, 3, 1, 6, 0, 7, 8, 2, 5, 7, 7, 9, 1, 3, 1, 8, 3, 7, 4, 7, 6, 4, 7, 3, 2, 0, 2, 6, 0, 7, 0, 7, 1, 9, 5, 7, 8, 3, 5, 4, 1, 7, 9, 4, 2, 7, 7, 8, 2, 4, 4, 8, 9, 6, 6, 9, 4, 6, 8, 7, 9, 5, 3, 6
Offset: 0

Views

Author

Robert G. Wilson v, Oct 09 2002

Keywords

Comments

Also decimal expansion of AGM(1,i)/(1+i).
See A085565 for the lemniscate constant A. - Peter Bala, Oct 25 2019
Also the ratio of height to diameter of a "Mylar balloon" (see Paulsen). - Jeremy Tan, May 05 2021

Examples

			0.599070117367796103719961246140161939113606331607825779131837476473202607...
AGM(1,i) = 0.59907011736779610371... + 0.59907011736779610371...*i
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley, 1998.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 421.

Crossrefs

Programs

Formula

Equals (2*Pi)^(-1/2)*GAMMA(3/4)^2.
Equals ee/sqrt(2)-1/2*sqrt(2*ee^2-Pi) where ee = EllipticE(1/2), or also Product_{m>=1} ((2*m)/(2*m-1))^(-1)^m. - Jean-François Alcover, Sep 02 2014, after Steven Finch.
Equals sqrt(2) * Pi^(3/2) / GAMMA(1/4)^2. - Vaclav Kotesovec, Oct 03 2019
From Peter Bala, Oct 25 2019: (Start)
Equals 1 - 1/3 - 1/(3*7) - (1*3)/(3*7*11) - (1*3*5)/(3*7*11*15) - ... = hypergeom([-1/2,1],[3/4],1/2) by Gauss’s second summation theorem.
Equivalently, define a sequence of rational numbers r(n) recursively by r(n) = (2*n - 3)/(4*n - 1)*r(n-1) with r(0) = 1. Then the constant equals Sum_{n >= 0} r(n) = 1 - 1/3 - 1/21 - 1/77 - 1/231 - 1/627 - 3/4807 - 1/3933 - 13/121923 - 13/284487 - 17/853461 - .... The partial sum of the series to 100 terms gives the constant correct to 32 decimal places.
Equals (1/3) + (1*3)/(3*7) + (1*3*5)/(3*7*11) + ... = (1/3) * hypergeom ([3/2,1],[7/4],1/2). (End)
Equals (1/2) * A053004. - Amiram Eldar, Aug 26 2020
Equals (2/3) * 1/A243340. - Peter Bala, Mar 25 2024
Equals Product_{n>=1} exp(((-1)^n*beta(n))/n), where beta(n) is the Dirichlet beta function. - Antonio Graciá Llorente, Oct 16 2024
Equals Integral_{x=0..1} x^2/sqrt(1 - x^4) dx = sqrt(Pi)*Gamma(7/4)/(3*Gamma(5/4)) (see Finch). - Stefano Spezia, Dec 15 2024

Extensions

Edited by N. J. A. Sloane, Nov 01 2008 at the suggestion of R. J. Mathar

A076392 Increasing partial quotients of the continued fraction for agm(1,i)/(1+i).

Original entry on oeis.org

0, 1, 2, 42, 61, 88, 238, 254, 288, 347, 575, 4034, 9853, 21798, 49736, 108435, 109003, 181562, 1035352, 1955976, 6950275, 30712753, 41463747, 45117343, 112401242, 116579541
Offset: 1

Views

Author

Robert G. Wilson v, Oct 09 2002

Keywords

Examples

			A076391(1) = 0
A076391(2) = 1
A076391(4) = 2
A076391(5) = 42
A076391(96) = 61
A076391(121) = 88
A076391(310) = 238
A076391(461) = 254
A076391(540) = 288
A076391(627) = 347
A076391(699) = 575
A076391(1136) = 4034
A076391(2986) = 9853
A076391(4172) = 21798
A076391(16727) = 49736
A076391(39201) = 108435
A076391(110180) = 109003
A076391(130606) = 181562
A076391(506314) = 1035352
A076391(512390) = 1955976
A076391(1248836) = 6950275
A076391(1990391) = 30712753
A076391(2528055) = 41463747
A076391(4853400) = 45117343
A076391(7427594) = 112401242
A076391(96166990) = 116579541
		

Crossrefs

Programs

  • Mathematica
    a = ContinuedFraction[ Chop[ N[ ArithmeticGeometricMean[1, I]/(1 + I), 10^4]]]; b = 0; Do[ If[ a[[n]] > b, Print[a[[n]]]; b = a[[n]]], {n, 1, 10^4}]

Extensions

a(21)-a(26) from Vaclav Kotesovec, Oct 03 2019
Showing 1-2 of 2 results.