cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A076400 Number of divisors of n-th perfect power.

Original entry on oeis.org

1, 3, 4, 3, 5, 3, 4, 6, 9, 3, 7, 5, 9, 3, 4, 8, 15, 3, 9, 16, 9, 6, 9, 3, 15, 4, 3, 15, 9, 9, 10, 3, 21, 5, 9, 7, 15, 3, 27, 3, 16, 11, 9, 9, 9, 25, 4, 3, 9, 9, 21, 3, 28, 27, 3, 15, 15, 12, 9, 8, 4, 3, 27, 5, 15, 9, 15, 16, 3, 21, 9, 6, 21, 9, 9, 16, 3, 45, 3, 9, 15, 13, 9, 27, 3, 15, 9, 27, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 09 2002

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, {1}~Join~Select[Range[5000], GCD @@ FactorInteger[#][[All, -1]] > 1 &]] (* Michael De Vlieger, Dec 16 2021 *)
  • Python
    from sympy import mobius, integer_nthroot, divisor_count
    def A076400(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return int(divisor_count(kmax)) # Chai Wah Wu, Aug 14 2024

Formula

a(n) = A000005(A001597(n)).

A076398 Number of distinct prime factors of n-th perfect power.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 09 2002

Keywords

Crossrefs

Programs

  • Haskell
    a076398 = a001221 . a025478  -- Reinhard Zumkeller, Mar 28 2014
    
  • Mathematica
    ppQ[1] = True; ppQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1; PrimeNu /@ Select[Range[10^4], ppQ] (* Jean-François Alcover, Jul 15 2017 *)
  • PARI
    lista(nn) = for(n=1, nn, if ((n==1) || ispower(n), print1(omega(n), ", "))); \\ Michel Marcus, Jul 15 2017
    
  • Python
    from sympy import mobius, integer_nthroot, primenu
    def A076398(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return int(primenu(kmax)) # Chai Wah Wu, Aug 14 2024

Formula

a(n) = A001221(A001597(n)).
a(n) = A001221(A025478(n)).

A360729 a(n) is the number of prime factors of the n-th powerful number (counted with repetition).

Original entry on oeis.org

0, 2, 3, 2, 4, 2, 3, 5, 4, 2, 6, 5, 4, 4, 5, 2, 3, 7, 6, 2, 4, 5, 6, 4, 5, 8, 7, 2, 6, 3, 2, 5, 6, 7, 4, 4, 5, 9, 2, 8, 4, 7, 5, 4, 6, 6, 7, 2, 8, 6, 2, 5, 7, 6, 10, 4, 5, 9, 4, 4, 8, 5, 3, 5, 2, 5, 4, 4, 7, 8, 2, 9, 6, 7, 2, 6, 8, 7, 6, 11, 4, 7, 3, 2, 10, 5
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Crossrefs

Similar sequences: A072047, A076399.

Programs

  • Mathematica
    PrimeOmega[Select[Range[3000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]]
  • PARI
    apply(bigomega, select(ispowerful, [1..3000]))

Formula

a(n) = A001222(A001694(n)).
Sum_{A001694(k) < x} a(k) = (2*zeta(3/2)/zeta(3))*sqrt(x)*log(log(x)) + (2*(B_2 - log(2)) + Sum_{p prime} (3/((p^(3/2)+1))))*(zeta(3/2)/zeta(3))*sqrt(x) + O(sqrt(x)/sqrt(log(x))), where B_2 = A083342 (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]

A363013 a(n) is the number of prime factors (counted with multiplicity) of the n-th cubefull number (A036966).

Original entry on oeis.org

0, 3, 4, 3, 5, 6, 4, 3, 7, 6, 5, 8, 3, 7, 9, 4, 7, 6, 8, 6, 10, 8, 3, 9, 8, 7, 11, 7, 3, 4, 9, 6, 5, 6, 10, 9, 8, 12, 3, 7, 10, 7, 9, 8, 3, 11, 10, 9, 13, 6, 8, 7, 11, 6, 8, 10, 3, 12, 4, 11, 6, 10, 14, 5, 7, 10, 6, 7, 9, 9, 12, 7, 9, 11, 3, 8, 9, 13, 7, 4, 3
Offset: 1

Views

Author

Amiram Eldar, May 13 2023

Keywords

Crossrefs

Similar sequences: A072047, A076399, A360729.

Programs

  • Mathematica
    PrimeOmega[Select[Range[10000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    iscubefull(n) = n==1 || vecmin(factor(n)[, 2]) > 2;
    apply(bigomega, select(iscubefull, [1..10000]))

Formula

a(n) = A001222(A036966(n)).
a(n) >= 3, for n > 1.
Sum_{A036966(k) < x} a(k) = 3*c*x^(1/3)*log(log(x)) + (3*(B_2 - log(2)) + Sum_{p prime} ((4*p^(1/3)+5)/(p^(5/3)+p^(1/3)+1)))*c*x^(1/3) + O(x^(1/3)/sqrt(log(x))), where B_2 = A083342 and c = A362974 (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]
Showing 1-4 of 4 results.