cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076454 Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly one way.

Original entry on oeis.org

1, 21, 102, 310, 735, 1491, 2716, 4572, 7245, 10945, 15906, 22386, 30667, 41055, 53880, 69496, 88281, 110637, 136990, 167790, 203511, 244651, 291732, 345300, 405925, 474201, 550746, 636202, 731235, 836535, 952816, 1080816, 1221297, 1375045, 1542870, 1725606, 1924111
Offset: 1

Views

Author

Floor van Lamoen, Oct 13 2002

Keywords

Comments

This sequence is related to A007585 by a(n) = n*A007585(n) - Sum_{i=0..n-1} A007585(i). - Vincenzo Librandi, Aug 08 2010
In fact, this is the case d=4 in the identity n*(n*(n+1)*(2*d*n-2*d+3)/6) - Sum_{k=0..n-1} k*(k+1)*(2*d*k-2*d+3)/6 = n*(n+1)*(3*d*n^2-d*n+4*n-2*d+2)/12. - Bruno Berselli, Mar 01 2012
Bisection of A233329 (up to an offset). - L. Edson Jeffery, Jan 23 2014

References

  • Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(2*n^2-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
  • Maple
    seq(1/2*n*(n+1)*(2*n^2-1),n=1..40);
  • Mathematica
    CoefficientList[Series[(1 + 16 x + 7 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,21,102,310,735},40] (* Harvey P. Dale, Jun 30 2023 *)

Formula

a(n) = n*(n+1)*(2*n^2-1)/2.
G.f.: x*(1+16*x+7*x^2)/(1-x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), n>=6, with a(1)=1, a(2)=21, a(3)=102, a(4)=310, a(5)=735. - L. Edson Jeffery, Dec 30 2013

Extensions

Comments rewritten from Bruno Berselli, Mar 01 2012
More terms from Vincenzo Librandi, Dec 30 2013