cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076577 Sum of squares of divisors d of n such that n/d is odd.

Original entry on oeis.org

1, 4, 10, 16, 26, 40, 50, 64, 91, 104, 122, 160, 170, 200, 260, 256, 290, 364, 362, 416, 500, 488, 530, 640, 651, 680, 820, 800, 842, 1040, 962, 1024, 1220, 1160, 1300, 1456, 1370, 1448, 1700, 1664, 1682, 2000, 1850, 1952, 2366, 2120, 2210, 2560, 2451, 2604
Offset: 1

Views

Author

Vladeta Jovovic, Oct 19 2002

Keywords

Examples

			G.f. = x + 4*x^2 + 10*x^3 + 16*x^4 + 26*x^5 + 40*x^6 + 50*x^7 + 64*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a:= n -> mul(`if`(t[1]=2, 2^(2*t[2]),
         (t[1]^(2*(1+t[2]))-1)/(t[1]^2-1)),t=ifactors(n)[2]):
    map(a, [$1..100]); # Robert Israel, Jul 05 2016
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d^2 Mod[ n/d, 2], {d, Divisors @ n}]]; (* Michael Somos, Jun 09 2014 *)
    Table[CoefficientList[Series[-Log[Product[(x^k - 1)^k/(x^k + 1)^k, {k, 1, 80}]]/2, {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *)
    f[2, e_] := 4^e; f[p_, e_] := (p^(2*e + 2) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d^2*((n/d) % 2)); \\ Michel Marcus, Jun 09 2014

Formula

G.f.: Sum_{m>0} m^2*x^m/(1-x^(2*m)). More generally, if b(n, k) is sum of k-th powers of divisors d of n such that n/d is odd then b(2n, k) = sigma_k(2n)-sigma_k(n), b(2n+1, k) = sigma_k(2n+1), where sigma_k(n) is sum of k-th powers of divisors of n. G.f. for b(n, k): Sum_{m>0} m^k*x^m/(1-x^(2*m)).
b(n, k) is multiplicative: b(2^e, k) = 2^(k*e), b(p^e, k) = (p^(ke+k)-1)/(p^k-1) for an odd prime p.
a(2*n) = sigma_2(2*n)-sigma_2(n), a(2*n+1) = sigma_2(2*n+1), where sigma_2(n) is sum of squares of divisors of n (cf. A001157).
b(n, k) = (sigma_k(2n)-sigma_k(n))/2^k. - Vladeta Jovovic, Oct 06 2003
Dirichlet g.f.: zeta(s)*(1-1/2^s)*zeta(s-2). - Geoffrey Critzer, Mar 28 2015
L.g.f.: -log(Product_{ k>0 } (x^k-1)^k/(x^k+1)^k)/2 = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
Sum_{k=1..n} a(k) ~ 7*Zeta(3)*n^3 / 24. - Vaclav Kotesovec, Feb 08 2019