A076610 Numbers having only prime factors of form prime(prime); a(1)=1.
1, 3, 5, 9, 11, 15, 17, 25, 27, 31, 33, 41, 45, 51, 55, 59, 67, 75, 81, 83, 85, 93, 99, 109, 121, 123, 125, 127, 135, 153, 155, 157, 165, 177, 179, 187, 191, 201, 205, 211, 225, 241, 243, 249, 255, 275, 277, 279, 283, 289, 295, 297, 327, 331, 335, 341, 353, 363
Offset: 1
Keywords
Examples
99 = 11*3*3 = A000040(A000040(3))*A000040(A000040(1))^2, therefore 99 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: S := {}: for r to 400 do s := 0: for t to nops(B(r)) do if isprime(B(r)[t]) = false then s := s+1 else end if end do: if s = 0 then S := `union`(S, {r}) else end if end do: S; # Emeric Deutsch, May 09 2015
-
Mathematica
{1}~Join~Select[Range@ 400, AllTrue[PrimePi@ First@ Transpose@ FactorInteger@ #, PrimeQ] &] (* Michael De Vlieger, May 09 2015, Version 10 *)
-
PARI
isok(k) = my(f = factor(k)[,1]); sum(i=1, #f, isprime(primepi(f[i]))) == #f; \\ Michel Marcus, Sep 16 2022
Formula
Sum_{n>=1} 1/a(n) = Product_{p in A006450} p/(p-1) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Sep 27 2020
Comments