A100441
a(n) is the denominator of f(n) where f(1) = 2 and f(n+1) is the solution of x + Sum_{i=1..n} f(i) = x * Product_{i=1..n} f(i).
Original entry on oeis.org
1, 1, 3, 13, 217, 57073, 3811958497, 16605534578235736513, 309708098978072051970763989442580255617, 106322990835084829467725909226560893968664147958670035553130958199430801942273
Offset: 1
Gilbert Boily (sgbl(AT)escape.ca), Nov 21 2004, Sep 03 2007
2, 2, 4/3, 16/13, 256/217, 65536/57073, 4294967296/3811958497, 18446744073709551616/16605534578235736513, ... = A001146/A100441 (essentially).
-
I:=[1,3]; [1] cat [n le 2 select I[n] else 2^(2^(n-1))-2^(2^(n-2))*Self(n-1)+Self(n-1)^2: n in [1..10]]; // Vincenzo Librandi, Jun 13 2015
-
f:=proc(n) option remember; local i,k,k1,k2; if n = 1 then return(2); fi; k:=mul(f(i),i=1..n-1); k1:=numer(k); k2:=denom(k); k1/(k1-k2); end;
f:=n-> if n=1 or n=2 then 2 else f(n-1)^2/(f(n-1)^2-f(n-1)+1) fi; # Robert FERREOL, Jun 12 2015
-
f[n_] := f[n] = (frac = Product[f[i], {i, 1, n-1}]; p = Numerator[frac]; q = Denominator[frac]; p/(p-q)); f[1] = 2; (* or, after Robert FERREOL *) f[n_] := f[n] = If[n == 1 || n == 2, 2, f[n-1]^2/(f[n-1]^2-f[n-1]+1)]; Table[f[n], {n, 1, 10}] // Denominator (* Jean-François Alcover, Sep 19 2012, updated Jun 15 2015 *)
-
{a(n) = my(s, t); if( n<3, n>0, t = a(n-1); s = 2^(2^(n-3)); s*s -s*t +t*t)}; /* Michael Somos, Aug 05 2017 */
-
@CachedFunction
def a(n): # a = A100441
if (n<3): return 2*n-1
else: return 2^(2^(n-1)) - 2^(2^(n-2))*a(n-1) + a(n-1)^2
[1]+[a(n) for n in range(1,12)] # G. C. Greubel, Apr 08 2023
A225163
Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 3/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
Original entry on oeis.org
1, 2, 14, 938, 5274374, 199225484935778, 329478051871899046990657602014, 1022767669188735114815831063606918316150663428260080434555738
Offset: 1
f(n) = 3, 3/2, 9/7, 81/67, ...
3 + 3/2 = 3 * 3/2 = 9/2; 3 + 3/2 + 9/7 = 3 * 3/2 * 9/7 = 81/14; ...
s(n) = 1/b(n) = 3, 9/2, 81/14, ...
- Paul Yiu, Recreational Mathematics, Department of Mathematics, Florida Atlantic University, 2003, Chapter 5.4, p. 207 (Project).
A225169
Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 10/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
Original entry on oeis.org
1, 9, 819, 7519239, 695384944860879, 6470289227069622272847335347359, 605164280025029017271801950447677089988237937249820002811725119
Offset: 1
f(n) = 10, 10/9, 100/91, 10000/9181, ...
10 + 10/9 = 10 * 10/9 = 100/9; 10 + 10/9 + 100/91 = 10 * 10/9 * 100/91 = 10000/819; ...
s(n) = 1/b(n) = 10, 100/9, 10000/819, ...
A167424
Define a sequence of fractions by f(1) = 1/2, f(n+1) = (f(n)^2 + 1)/2; sequence gives numerators.
Original entry on oeis.org
0, 1, 5, 89, 24305, 1664474849, 7382162541380960705, 139566915517602820239076685726696149889, 48426946216426731755940416722216940042029155625849753533402166195474237122305
Offset: 0
0/1, 1/2, 5/8, 89/128, 24305/32768, 1664474849/2147483648, 7382162541380960705/9223372036854775808, ...
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal Stopping Constants, p. 362.
- Richard Blecksmith, John Brillhart, and Irving Gerst, On the mod 2 reciprocation of infinite modular-part products and the parity of certain partition functions, Mathematics of Computation 54.189 (1990): 345-376. The sequence appears in Prop. 21. - _N. J. A. Sloane_, Nov 28 2019
- Ji Chen, Inspired by IMO Shortlist 2001 algebra problem 3
- Tom Davis, Iterated Functions. See page 17.
- Ross Millikan, Strategy to maximize the expected sum of 3 numbers each drawn from ~U(0, 1), answer on MathStackExchange.
- Brian Skinner, When is a shot too good to pass up? - The shooter's sequence.
- Wikipedia, Mandelbrot-Menge. See table for c=+0,25.
Denominators are (essentially)
A058891.
-
f:=proc(n) option remember; if n = 1 then 1/2; else (f(n-1)^2+1)/2; fi; end;
-
a[1]=0; a[n_] := a[n]=(a[n - 1]^2 + 1)/2; Numerator[Table[a[n], {n, 10}]] (* José María Grau Ribas, May 19 2013 *)
-
{a(n) = if( n<2, n>0, a(n-1)^2 + 4*(a(n-1) - a(n-2)^2)^2)}; /* Michael Somos, Aug 16 2011 */
-
{a(n) = my(x=0); if( n<1, 0, for(k=1, n, x = x^2 + 1/4); numerator(x))}; /* Michael Somos, May 12 2019 */
A187131
Numerator of probability that the height of a rooted random binary tree is n.
Original entry on oeis.org
1, 1, 9, 1521, 71622369, 233297499911422401, 3390052406222940758260506721830900609, 934785860242188709610961043825803400592180434378516146129897302939414193921
Offset: 0
For n=0 the root node may have no branches giving the tree height 0, so p(0)=1/2 and a(0)=1; p(1) = 1/2*1/4 = 1/8 so a(1)=1; p(2) = 1/4*1/4 + 1/8*1/16 = 9/128 so a(2)=9; p(3) = 5/32*1/4 + 7/64*1/16 + 1/32*1/64 + 1/128*1/256 = 1521/32768 so a(3)=1521.
A225164
Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 5/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
Original entry on oeis.org
1, 4, 84, 45444, 15686405364, 2147492192737717340004, 45388476229808808857318702720533556450342484
Offset: 1
f(n) = 5, 5/4, 25/21, 625/541, ...
5 + 5/4 = 5 * 5/4 = 25/4; 5 + 5/4 + 25/21 = 5 * 5/4 * 25/21 = 625/84; ...
s(n) = 1/b(n) = 5, 25/4, 625/84, ...
A225165
Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 6/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
Original entry on oeis.org
1, 5, 155, 176855, 265770796655, 679134511201261085170655, 4943777738415359153962876938905400001585992709055
Offset: 1
f(n) = 6, 6/5, 36/31, 1296/1141, ...
6 + 6/5 = 6 * 6/5 = 36/5; 6 + 6/5 + 36/31 = 6 * 6/5 * 36/31 = 1296/155; ...
s(n) = 1/b(n) = 6, 36/5, 1296/155, ...
A225166
Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 7/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
Original entry on oeis.org
1, 6, 258, 552894, 2881632108858, 87461276190009420415561494, 88945179016152188483365571645414219233310820789054258
Offset: 1
f(n) = 7, 7/6, 49/43, 2401/2143, ...
7 + 7/6 = 7 * 7/6 = 49/6; 7 + 7/6 + 49/43 = 7 * 7/6 * 49/43 = 2401/258; ...
s(n) = 1/b(n) = 7, 49/6, 2401/258, ...
A225167
Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 8/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
Original entry on oeis.org
1, 7, 399, 1475103, 22572192792639, 5844003553148435725257076863, 428857285713570950220841681681938481172663051541516755199
Offset: 1
f(n) = 8, 8/7, 64/57, 4096/3697, ...
8 + 8/7 = 8 * 8/7 = 64/7; 8 + 8/7 + 64/57 = 8 * 8/7 * 64/57 = 4096/399; ...
s(n) = 1/b(n) = 8, 64/7, 4096/399, ...
A225168
Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 9/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
Original entry on oeis.org
1, 8, 584, 3490568, 138073441864904, 236788599971507074896206759048, 756988343475413525492604622110601759725560263205883476698184
Offset: 1
f(n) = 9, 9/8, 81/73, 6561/5977, ...
9 + 9/8 = 9 * 9/8 = 81/8; 9 + 9/8 + 81/73 = 9 * 9/8 * 81/73 = 6561/584; ...
s(n) = 1/b(n) = 9, 81/8, 6561/584, ...
Showing 1-10 of 11 results.
Comments