A076826 a(n) = 2*(Sum_{k=0..n} A010060(k)) - n, where A010060 is a Thue-Morse sequence.
0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8191
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 52.
- Index entries for sequences that are fixed points of mappings
Crossrefs
Programs
-
Mathematica
Nest[ Function[ l, {Flatten[(l /. {0 -> {0, 1, 2}, 1 -> {1}, 2 -> {2, 1, 0}}) ]}], {0}, 6] (* Robert G. Wilson v, Mar 03 2005 *) cnt=0; Join[{0}, Table[If[EvenQ[Count[IntegerDigits[n,2],1]], cnt--, cnt++ ]; cnt, {n,150}]] (* T. D. Noe, Jun 14 2007 *)
-
PARI
a(n)=if(n<0,0,2*sum(k=1,n,subst(Pol(binary(k)),x,1)%2)-n)
-
PARI
a(n)=if(n<1,0,if(n%2,1,if(n/2%2,2-a(n\4*2),a(n/2))))
-
Python
def A076826(n): return 1 if n&1 else (n.bit_count()&1)<<1 # Chai Wah Wu, Mar 01 2023
Formula
a(2k+1) = 1, a(4k) = a(2k), a(4k+2) = 2-a(2k). - Michael Somos, Dec 04 2002
a(2n) = 2*A010060(n); a(2n+1) = 1. - Benoit Cloitre, Mar 08 2004
a(n) = 2*(A026430(n+1) - 1) mod 3. - Philippe Deléham, Mar 28 2004
a(n) = (number of odious numbers <= n) - (number of evil numbers <= n) for n>0. - T. D. Noe, Jun 14 2007
a(n) = 2*A115384(n) - n. - Vladimir Shevelev, May 31 2009
a(n) = 0 if n and A000120(n) are even; a(n) = 2 if n is even but A000120(n) is odd; a(n) = 1 if n is odd. - Vladimir Shevelev, May 31 2009
Comments