cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076846 Primes of the form n^k + n - 1, where k>0 is minimal.

Original entry on oeis.org

3, 5, 7, 29, 11, 13, 71, 17, 19, 131, 23, 181, 2177953337809371149, 29, 31, 83537, 5849, 37, 419, 41, 43, 279863, 47, 15649, 701, 53, 811, 420707233300229, 59, 61
Offset: 2

Views

Author

Benoit Cloitre, Nov 20 2002

Keywords

Comments

The next term is too large to include.

Crossrefs

Programs

Extensions

Offset corrected by Reinhard Zumkeller, Jul 17 2014

A078178 Least k>=2 such that n^k + n - 1 is prime.

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 16, 2, 2, 4, 3, 2, 2, 2, 7, 4, 2, 3, 2, 3, 2, 10, 2, 2, 108, 3, 6, 2, 3, 7, 2, 2, 4, 2, 16, 3, 2, 2, 2, 20, 2, 7, 2, 3, 3, 2, 2, 2, 2, 9, 4, 2, 2, 7, 8, 3, 2, 2, 2, 24, 2, 6, 2, 12, 4, 3, 8, 6, 2, 4, 3, 9, 194, 3, 13, 2, 8, 2, 2, 3, 8, 2, 10, 6, 4, 2, 2, 54, 2, 132, 4, 10, 2
Offset: 2

Views

Author

Reinhard Zumkeller, Nov 20 2002

Keywords

Comments

n^a(n) + n - 1 = A078179(n).

Examples

			7^2+7-1=5*11, but 7^3+7-1=349=A000040(70), therefore a(7)=3.
		

Crossrefs

Programs

  • Haskell
    a078178 n = head [k | k <- [2..], a010051'' (n ^ k + n - 1) == 1]
    -- Reinhard Zumkeller, Jul 16 2014
  • Mathematica
    lkp[n_]:=Module[{k=2},While[!PrimeQ[n^k+n-1],k++];k]; Array[lkp,100,2] (* Harvey P. Dale, May 24 2020 *)

Extensions

More terms from Benoit Cloitre, Nov 20 2002

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))
Showing 1-3 of 3 results.