A032299
"EFJ" (unordered, size, labeled) transform of 1,2,3,4,...
Original entry on oeis.org
1, 1, 2, 9, 16, 85, 516, 1519, 6280, 45441, 431740, 1394371, 8370924, 43960657, 459099018, 6135631545, 23813007376, 150537761905, 1029390040764, 7519458731131, 101693768415220, 1909742186139921, 8269148260309882, 60924484457661793, 417027498430063800
Offset: 0
-
mmax = 25;
egf = Product[1 + x^m/(m - 1)!, {m, 1, mmax}] + O[x]^mmax;
CoefficientList[egf, x] * Range[0, mmax - 1]! (* Jean-François Alcover, Sep 23 2019 *)
-
seq(n)={Vec(serlaplace(prod(k=1, n, 1 + k*x^k/k! + O(x*x^n))))} \\ Andrew Howroyd, Sep 11 2018
a(0)=1 prepended and terms a(23) and beyond from
Andrew Howroyd, Sep 11 2018
A319218
Expansion of e.g.f. Product_{k>=1} (1 - x^k/(k - 1)!).
Original entry on oeis.org
1, -1, -2, 3, 8, 75, -216, -175, -3816, -36225, 189800, 325149, 2375460, 25547951, 386162126, -3290670825, -6316583056, -59290501809, -310987223208, -4836373835707, -86500419684420, 1119358992256239, 3043733432729198, 26408738842522959, 169835931388147464
Offset: 0
-
seq(n!*coeff(series(mul((1 - x^k/(k - 1)!),k=1..100),x=0,25),x,n),n=0..24); # Paolo P. Lava, Jan 09 2019
-
nmax = 24; CoefficientList[Series[Product[(1 - x^k/(k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[Exp[-Sum[Sum[x^(j k)/(k (j - 1)!^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[-d (d - 1)!^(-k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 24}]
A319219
Expansion of e.g.f. Product_{k>=1} 1/(1 + x^k/(k - 1)!).
Original entry on oeis.org
1, -1, 0, -3, 32, -105, 204, -3325, 52408, -376425, 1304180, -25766301, 659066484, -6675505837, 30765540974, -893416597515, 29169795361424, -380344619169729, 2379504317523300, -84225906785770525, 3388223174832010540, -55107296201168047221, 422923168260105913070
Offset: 0
-
seq(n!*coeff(series(mul(1/(1 + x^k/(k - 1)!),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
-
nmax = 22; CoefficientList[Series[Product[1/(1 + x^k/(k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[Sum[Sum[x^(j k)/(k (-(j - 1)!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[d (-(d - 1)!)^(-k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 22}]
Showing 1-3 of 3 results.