cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A076900 Expansion of e.g.f.: 1/Product_{m>0} (1-x^m/(m-1)!).

Original entry on oeis.org

1, 1, 4, 15, 88, 505, 4056, 31549, 311816, 3083049, 36343720, 431215741, 5937234348, 82236865165, 1291252453050, 20477737537755, 361495828272496, 6449450737736065, 126566562342343176, 2509520619696338269, 54179963857121953460, 1182248224137860933781
Offset: 0

Views

Author

Vladeta Jovovic, Nov 26 2002

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(n, i)*i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 11 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i-1] + If[i > n, 0, b[n-i, i] Binomial[n, i] i]]];
    a[n_] := b[n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Nov 03 2020, after Alois P. Heinz *)

Formula

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*((j - 1)!)^k)). - Ilya Gutkovskiy, Sep 13 2018
a(n) ~ c * n * n!, where c = A247551/2. - Vaclav Kotesovec, Sep 13 2018

A386254 Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times.

Original entry on oeis.org

1, 1, 2, 6, 18, 60, 240, 1085, 5012, 23730, 121440, 685707, 4144668, 25614589, 159141892, 1012740885, 6805631232, 48872707006, 369227821608, 2853779791619, 22131042288980, 172055270717463, 1362017827326860, 11208504802237327, 96939147303239304, 875473007351905045
Offset: 0

Views

Author

John Tyler Rascoe, Jul 16 2025

Keywords

Examples

			a(3) = 6 counts: (1,1,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2), (3,3,3).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-j, min(n-j, i-1))/j!, j=i..n)))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 17 2025
  • Mathematica
    terms=26; CoefficientList[Series[Product[1+Sum[x^j/j!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
  • PARI
    D_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/i!))))}

Formula

E.g.f.: Product_{k>=1} (1 + Sum_{j>=k} x^j / j!).

A386255 Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times and exactly one of each kind of letter is marked.

Original entry on oeis.org

1, 1, 4, 15, 64, 325, 1776, 11179, 72640, 489969, 3435580, 26495491, 221599104, 1893705697, 16145571820, 138299146665, 1241234863936, 12033569772769, 124055067568788, 1303750295285563, 13577876900409280, 139418829477000801, 1441311794301705964, 15537427948684769425
Offset: 0

Views

Author

John Tyler Rascoe, Jul 16 2025

Keywords

Examples

			a(3) = 15 counts: (1#,1,1), (1,1#,1), (1,1,1#), (1#,2#,2), (1#,2,2#), (2#,1#,2), (2,1#,2#), (2#,2,1#), (2,2#,1#), (2#,2,2), (2,2#,2), (2,2,2#), (3#,3,3), (3,3#,3), (3,3,3#) where # denotes a mark.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-j, min(n-j, i-1))/(j-1)!, j=i..n)))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 17 2025
  • Mathematica
    terms=24; CoefficientList[Series[Product[1+Sum[x^j/(j-1)!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
  • PARI
    E_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/((i-1)!)))))}

Formula

E.g.f.: Product_{k>=1} (1 + Sum_{j>=k} x^j / (j-1)!).

A319218 Expansion of e.g.f. Product_{k>=1} (1 - x^k/(k - 1)!).

Original entry on oeis.org

1, -1, -2, 3, 8, 75, -216, -175, -3816, -36225, 189800, 325149, 2375460, 25547951, 386162126, -3290670825, -6316583056, -59290501809, -310987223208, -4836373835707, -86500419684420, 1119358992256239, 3043733432729198, 26408738842522959, 169835931388147464
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 13 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul((1 - x^k/(k - 1)!),k=1..100),x=0,25),x,n),n=0..24); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[Product[(1 - x^k/(k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[Exp[-Sum[Sum[x^(j k)/(k (j - 1)!^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[-d (d - 1)!^(-k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 24}]

Formula

E.g.f.: exp(-Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*((j - 1)!)^k)).

A319219 Expansion of e.g.f. Product_{k>=1} 1/(1 + x^k/(k - 1)!).

Original entry on oeis.org

1, -1, 0, -3, 32, -105, 204, -3325, 52408, -376425, 1304180, -25766301, 659066484, -6675505837, 30765540974, -893416597515, 29169795361424, -380344619169729, 2379504317523300, -84225906785770525, 3388223174832010540, -55107296201168047221, 422923168260105913070
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 13 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul(1/(1 + x^k/(k - 1)!),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[1/(1 + x^k/(k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[x^(j k)/(k (-(j - 1)!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[d (-(d - 1)!)^(-k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(-(j - 1)!)^k)).

A371310 Expansion of e.g.f. Product_{k>=1} (1 + prime(k)*x^k/k!).

Original entry on oeis.org

1, 2, 3, 23, 47, 231, 2260, 6527, 35151, 224759, 3434124, 12476055, 79758206, 491191521, 4752819625, 105146082344, 393097093065, 2976053272527, 21569670506914, 188844207315245, 2277243901499454, 72603521472295945, 326137558352646889, 2491611720654851668
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2024

Keywords

Comments

"EFJ" (unordered, size, labeled) transform of primes.

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 + Prime[k] x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

A371311 Expansion of e.g.f. Product_{k>=1} (1 + k*x^k/(k-1)!).

Original entry on oeis.org

1, 1, 4, 21, 52, 465, 3306, 14161, 74208, 960777, 10558630, 44851521, 361716576, 2473446157, 46951741760, 735722365995, 3502764883456, 27660533205537, 257573937401838, 2415069153393553, 62591287234200960, 1356650271603527061, 6966660193683272104, 61046400429116180475
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2024

Keywords

Comments

"EFJ" (unordered, size, labeled) transform of squares.

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 + k x^k/(k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-7 of 7 results.