cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077044 Largest coefficient in expansion of (1 + x + x^2 + ... + x^(n-1))^5 = ((1-x^n)/(1-x))^5, i.e., the coefficient of x^floor(5*(n-1)/2) and of x^ceiling(5*(n-1)/2); also number of compositions of floor(5*(n+1)/2) into exactly 5 positive integers each no more than n.

Original entry on oeis.org

0, 1, 10, 51, 155, 381, 780, 1451, 2460, 3951, 6000, 8801, 12435, 17151, 23030, 30381, 39280, 50101, 62910, 78151, 95875, 116601, 140360, 167751, 198780, 234131, 273780, 318501, 368235, 423851, 485250, 553401, 628160, 710601, 800530
Offset: 0

Views

Author

Henry Bottomley, Oct 22 2002

Keywords

Examples

			a(2)=10 since the compositions of floor(5*(2+1)/2) = 7 into exactly 5 positive integers each no more than 2 are: 1+1+1+2+2, 1+1+2+1+2, 1+1+2+2+1, 1+2+1+1+2, 1+2+1+2+1, 1+2+2+1+1, 2+1+1+1+2, 2+1+1+2+1, 2+1+2+1+1, 2+2+1+1+1.
		

Programs

  • Magma
    [(230*n^4+70*n^2+27-(30*n^2+27)*(-1)^n)/384: n in [0..40]]; // Vincenzo Librandi, Sep 05 2011
    
  • Mathematica
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{0,1,10,51,155,381,780,1451},40] (* Harvey P. Dale, Mar 05 2015 *)
  • PARI
    a(n)=(230*n^4+70*n^2-30*n^2*(-1)^n)\/384 \\ Charles R Greathouse IV, Sep 25 2012

Formula

a(n) = (230*n^4 + 70*n^2 + 27 - (30*n^2 + 27)*(-1)^n)/384 = A077042(n, 5).
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
G.f.: -x*(1 + 8*x + 29*x^2 + 39*x^3 + 29*x^4 + 8*x^5 + x^6) / ( (1+x)^3*(x-1)^5 ). - R. J. Mathar, Sep 04 2011