cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A005316 Meandric numbers: number of ways a river can cross a road n times.

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 14, 42, 81, 262, 538, 1828, 3926, 13820, 30694, 110954, 252939, 933458, 2172830, 8152860, 19304190, 73424650, 176343390, 678390116, 1649008456, 6405031050, 15730575554, 61606881612, 152663683494, 602188541928, 1503962954930, 5969806669034, 15012865733351, 59923200729046, 151622652413194, 608188709574124, 1547365078534578, 6234277838531806, 15939972379349178, 64477712119584604, 165597452660771610, 672265814872772972, 1733609081727968492, 7060941974458061392
Offset: 0

Views

Author

Keywords

Comments

Number of ways that a river (or directed line) that starts in the southwest and flows east can cross an east-west road n times (see the illustration).
Or, number of ways that an undirected line can cross a road with at least one end below the road.

References

  • Alon, Noga and Maass, Wolfgang, Meanders and their applications in lower bounds arguments. Twenty-Seventh Annual IEEE Symposium on the Foundations of Computer Science (Toronto, ON, 1986). J. Comput. System Sci. 37 (1988), no. 2, 118-129.
  • V. I. Arnol'd, A branched covering of CP^2->S^4, hyperbolicity and projective topology [ Russian ], Sibir. Mat. Zhurn., 29 (No. 2, 1988), 36-47 = Siberian Math. J., 29 (1988), 717-725.
  • V. I. Arnol'd, ed., Arnold's Problems, Springer, 2005; Problem 1989-18.
  • B. Bobier and J. Sawada, A fast algorithm to generate open meandric systems and meanders, ACM Transactions on Algorithms, Vol. 6, No. 2, 2010, article #42.
  • Di Francesco, P. The meander determinant and its generalizations. Calogero-Moser-Sutherland models (Montreal, QC, 1997), 127-144, CRM Ser. Math. Phys., Springer, New York, 2000.
  • Di Francesco, P., SU(N) meander determinants. J. Math. Phys. 38 (1997), no. 11, 5905-5943.
  • Di Francesco, P. Truncated meanders. Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), 135-162, Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999.
  • Di Francesco, P. Meander determinants. Comm. Math. Phys. 191 (1998), no. 3, 543-583.
  • Di Francesco, P. Exact asymptotics of meander numbers. Formal power series and algebraic combinatorics (Moscow, 2000), 3-14, Springer, Berlin, 2000.
  • Di Francesco, P., Golinelli, O. and Guitter, E., Meanders. In The Mathematical Beauty of Physics (Saclay, 1996), pp. 12-50, Adv. Ser. Math. Phys., 24, World Sci. Publishing, River Edge, NJ, 1997.
  • Di Francesco, P., Golinelli, O. and Guitter, E. Meanders and the Temperley-Lieb algebra. Comm. Math. Phys. 186 (1997), no. 1, 1-59.
  • Di Francesco, P., Guitter, E. and Jacobsen, J. L. Exact meander asymptotics: a numerical check. Nuclear Phys. B 580 (2000), no. 3, 757-795.
  • Franz, Reinhard O. W. A partial order for the set of meanders. Ann. Comb. 2 (1998), no. 1, 7-18.
  • Franz, Reinhard O. W. and Earnshaw, Berton A. A constructive enumeration of meanders. Ann. Comb. 6 (2002), no. 1, 7-17.
  • Isakov, N. M. and Yarmolenko, V. I. Bounded meander approximations. (Russian) Qualitative and approximate methods for the investigation of operator equations (Russian), 71-76, 162, Yaroslav. Gos. Univ., 1981.
  • Lando, S. K. and Zvonkin, A. K. Plane and projective meanders. Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991).
  • Lando, S. K. and Zvonkin, A. K. Meanders. In Selected translations. Selecta Math. Soviet. 11 (1992), no. 2, 117-144.
  • Makeenko, Y., Strings, matrix models and meanders. Theory of elementary particles (Buckow, 1995). Nuclear Phys. B Proc. Suppl. 49 (1996), 226-237.
  • A. Panayotopoulos, On Meandric Colliers, Mathematics in Computer Science, (2018). https://doi.org/10.1007/s11786-018-0389-6.
  • A. Phillips, Simple Alternating Transit Mazes, unpublished. Abridged version appeared as La topologia dei labirinti, in M. Emmer, editor, L'Occhio di Horus: Itinerari nell'Imaginario Matematico. Istituto della Enciclopedia Italia, Rome, 1989, pp. 57-67.
  • J. A. Reeds and L. A. Shepp, An upper bound on the meander constant, preprint, May 25, 1999. [Obtains upper bound of 13.01]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Computed to n = 43 by Iwan Jensen

A005315 Closed meandric numbers (or meanders): number of ways a loop can cross a road 2n times.

Original entry on oeis.org

1, 1, 2, 8, 42, 262, 1828, 13820, 110954, 933458, 8152860, 73424650, 678390116, 6405031050, 61606881612, 602188541928, 5969806669034, 59923200729046, 608188709574124, 6234277838531806, 64477712119584604, 672265814872772972, 7060941974458061392
Offset: 0

Views

Author

N. J. A. Sloane, J. A. Reeds (reeds(AT)idaccr.org)

Keywords

Comments

There is a 1-to-1 correspondence between loops crossing a road 2n times and lines crossing a road 2n-1 times.

References

  • S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
  • S. K. Lando and A. K. Zvonkin, Meanders, Selecta Mathematica Sovietica, Vol. 11, Number 2, pp. 117-144, 1992.
  • A. Phillips, Simple Alternating Transit Mazes, preprint. Abridged version appeared as "La topologia dei labirinti," in M. Emmer, editor, L'Occhio di Horus: Itinerari nell'Imaginario Matematico. Istituto della Enciclopedia Italia, Rome, 1989, pp. 57-67.
  • V. R. Pratt, personal communication.
  • J. A. Reeds and L. A. Shepp, An upper bound on the meander constant, preprint, May 25, 1999. [Obtains upper bound of 13.01]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For additional references, see A005316.

Crossrefs

These are the odd-numbered terms of A005316. Cf. A077054. For nonisomorphic solutions, see A077460.
A column of triangle A008828.

Programs

Formula

a(n) = A005316(2n-1) for n>0.

A077056 Total number of "humps" in all A005316(2n) open meanders with 2n crossings.

Original entry on oeis.org

0, 1, 4, 22, 140, 992, 7584, 61420, 520320, 4570292, 41354416, 383609434, 3634231140, 35059333218, 343580813492, 3413862553800, 34336784362232, 349131316634164, 3584622273967324, 37128374058146138, 387630493693010928, 4076329834240413392, 43150916852592230992
Offset: 0

Views

Author

N. J. A. Sloane and Jon Wild, Nov 29 2002

Keywords

Comments

A "hump" is a local maxima of the upper envelope of the part of the meander that extends above the East-West road.
A "hump" can also be described as an exterior top arch. - Andrew Howroyd, Feb 01 2025

Examples

			The three open meanders with 4 crossings have respectively 2, 1 and 1 humps, so a(2) = 4.
		

Crossrefs

Cf. A005316 (open meanders), A077054, A380369.

Formula

a(n) = Sum_{k=1..n} k*A380369(n,k). - Andrew Howroyd, Feb 01 2025

Extensions

a(9)-a(20) from Andrew Howroyd, Nov 22 2015
a(21)-a(22) from Andrew Howroyd, Feb 01 2025
a(0) corrected by Andrew Howroyd, Feb 02 2025

A086031 Number of nonisomorphic ways a loop can cross two parallel roads 2n times.

Original entry on oeis.org

1, 1, 3, 7, 37, 207, 1470, 11169, 91166, 776841, 6865598, 62443973
Offset: 0

Views

Author

N. J. A. Sloane and Jon Wild, Aug 25 2003

Keywords

Comments

There is no obligation to cross the lower road (cf. A077054).

Crossrefs

Cf. A077054. Isomorphism classes from A085973.

A380369 Triangle read by rows: T(n,k) is the number of open meanders with 2n crossings and k exterior top arches, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 7, 6, 1, 0, 36, 32, 12, 1, 0, 221, 202, 94, 20, 1, 0, 1530, 1417, 728, 220, 30, 1, 0, 11510, 10752, 5854, 2090, 445, 42, 1, 0, 92114, 86554, 48942, 19300, 5160, 812, 56, 1, 0, 773259, 729716, 423778, 178478, 54758, 11396, 1372, 72, 1, 0, 6743122, 6384353, 3781926, 1669062, 561514, 138866, 23072, 2184, 90, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 01 2025

Keywords

Examples

			Triangle begins:
  1;
  0,     1;
  0,     2,     1;
  0,     7,     6,     1;
  0,    36,    32,    12,     1;
  0,   221,   202,    94,    20,    1;
  0,  1530,  1417,   728,   220,   30,   1;
  0, 11510, 10752,  5854,  2090,  445,  42,  1;
  0, 92114, 86554, 48942, 19300, 5160, 812, 56, 1;
  ...
The T(2,1) = 2 open meanders are:
         __           __
        /  \         /  \
   ... / /\ \..  .. / /\ \ ...
      / /  \/       \/  \ \
The T(2,2) = 1 open meander is:
   ... /\../\ ...
      /  \/  \
		

Crossrefs

Row sums are A077054.
Main diagonal is A000012.
Second diagonal is A002378.
Cf. A005316, A006660 (bisection gives column 1), A077056 (total number of exterior top arches), A259689 (for semi-meanders), A259974.

Formula

A077056(n) = Sum_{k=1..n} k*T(n,k).
T(n,1) = A006660(2*n + 1).

A085973 Number of ways a loop can cross two parallel roads 2n times.

Original entry on oeis.org

3, 2, 5, 22, 123, 800, 5754, 44514, 363893, 3106288, 27457050, 249768040, 2327398572, 22135606604, 214270565106, 2106151496858, 20982672402385, 211545853142240, 2155553788108702, 22174250217880984, 230075164780356214
Offset: 0

Views

Author

N. J. A. Sloane and Jon Wild, Aug 25 2003

Keywords

Comments

There is no obligation to cross the lower road (cf. A077054).

Crossrefs

Programs

Formula

a(n) = A077054(n) + A005315(n) for n >= 1. - Andrew Howroyd, Nov 26 2015

Extensions

a(13)-a(20) from Andrew Howroyd, Nov 26 2015

A368054 Irregular triangle read by rows: T(n,k) is the number of k-crossing partitions on 2n nodes, where all partition terms alternate in parity, counted up to reflection.

Original entry on oeis.org

1, 1, 3, 0, 1, 14, 0, 8, 10, 2, 2, 81, 0, 59, 162, 70, 66, 82, 22, 19, 6, 7, 0, 2, 538, 0, 454, 1952, 1229, 1208, 2516, 1803, 1181, 1148, 998, 478, 370, 279, 125, 76, 26, 13, 3, 3, 3926, 0, 3658, 21608, 17083, 17811, 48542, 51306, 40081, 51660, 59023, 42327
Offset: 0

Views

Author

John Tyler Rascoe, Dec 09 2023

Keywords

Comments

The 0-crossing partitions counted in A005316 all have terms that alternate in parity. Also, for an even number of nodes the partitions 1432 and 2341 count the same meandric path. This triangle aims to reduce the total number of k-crossing partitions considered from (2*n)! to (n!)^2, see Irwin link.

Examples

			Triangle begins:
       k=0  1   2    3   4   5   6   7   8   9  10  11  12
  n=0:   1;
  n=1:   1;
  n=2:   3, 0,  1;
  n=3:  14, 0,  8,  10,  2,  2;
  n=4:  81, 0, 59, 162, 70, 66, 82, 22, 19,  6,  7,  0,  2;
  ...
Row n = 3 counts the following k-crossing partitions.
T(3,0) = 14:   T(3,2) = 8:    T(3,3) = 10:   T(3,4) = 2:    T(3,5) = 2:
(1,2,3,4,5,6)  (3,4,1,6,5,2)  (1,2,5,6,3,4)  (3,2,5,6,1,4)  (3,6,1,4,5,2)
(1,2,3,6,5,4)  (3,4,5,6,1,2)  (1,4,3,6,5,2)  (3,6,1,2,5,4)  (5,2,3,6,1,4)
(1,2,5,4,3,6)  (3,6,5,4,1,2)  (1,4,5,2,3,6)
(1,4,3,2,5,6)  (5,2,1,6,3,4)  (1,6,3,2,5,4)
(1,4,5,6,3,2)  (5,4,3,6,1,2)  (3,2,5,4,1,6)
(1,6,3,4,5,2)  (5,6,1,2,3,4)  (3,4,1,2,5,6)
(1,6,5,2,3,4)  (5,6,1,4,3,2)  (3,6,5,2,1,4)
(1,6,5,4,3,2)  (5,6,3,2,1,4)  (5,2,1,4,3,6)
(3,2,1,4,5,6)                 (5,4,1,6,3,2)
(3,2,1,6,5,4)                 (5,6,3,4,1,2)
(3,4,5,2,1,6)
(5,2,3,4,1,6)
(5,4,1,2,3,6)
(5,4,3,2,1,6)
		

Crossrefs

Cf. A077054 (column k=0), A001044 (row sums).

Programs

  • Python
    # see linked program

A378944 Triangle read by rows: T(n,k) = number of stamp foldings with stamp #1 first, n stamps and stamp #2 covered by exactly one fold. k = the stamp number before the fold covering stamp #2 divided by 2. See examples.

Original entry on oeis.org

2, 4, 8, 6, 20, 12, 48, 24, 28, 132, 60, 56, 348, 144, 112, 162, 1008, 396, 280, 324, 2812, 1044, 672, 648, 1076, 8420, 3024, 1848, 1620, 2152
Offset: 5

Views

Author

Roger Ford, Dec 11 2024

Keywords

Comments

The conjectured formula for the numbers in T(n,k) involves two unsolved sequences, semi-meanders and meandric numbers.

Examples

			                          _____    __         ______________
Vertical lines = stamp#  |     |  |  |       |   __    __   |   __
Horizontal lines = folds 1  5  2  3  4       |  |  |  |  |  |  |  |
                            |  |__|  |       1  6  5  4  3  2  8  7
                            |________|          |  |__|  |__|     |
     fold 4-5 covers stamp #2  k = 4/2          |_________________|
                        Example: T(5,2)      fold 6-7 covers stamp #2 k = 6/2
                                                               Example: T(8,3)
Irregular triangle begins:
   n\k  (2)  (3)  (4)  (5)  (6)
    5:   2
    6:   4
    7:   8    6
    8:   20   12
    9:   48   24   28
   10:   132  60   56
   11:   348  144  112  162
   12:   1008 396  280  324
   13:   2812 1044 672  648  1076
   14:   8420 3024 1848 1620 2152
		

Crossrefs

Formula

T(n,k) = 2 * A000682(n+1-2*k) * A077054(k-1).
Showing 1-8 of 8 results.