cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A077064 Squarefree numbers of form prime - 1.

Original entry on oeis.org

1, 2, 6, 10, 22, 30, 42, 46, 58, 66, 70, 78, 82, 102, 106, 130, 138, 166, 178, 190, 210, 222, 226, 238, 262, 282, 310, 330, 346, 358, 366, 382, 418, 430, 438, 442, 462, 466, 478, 498, 502, 546, 562, 570, 586, 598, 606, 618, 642, 646, 658, 682, 690, 718, 742
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Comments

This sequence is infinite and its relative density in the sequence of primes is equal to Artin's constant (A005596): Product_{p prime} (1-1/(p*(p-1))) = 0.373955... (Victorovich, 2013). - Amiram Eldar, Dec 29 2020

Examples

			A005117(44) = 70 = 2*5*7 is a term as 70 = A000040(20)-1 = 71-1.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]]-1,SquareFreeQ] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    isok(n) = issquarefree(n) && isprime(n+1); \\ Michel Marcus, Mar 22 2016
    
  • PARI
    lista(nn) = forprime(p=2, nn, if (issquarefree(p-1), print1(p-1, ", "))); \\ Michel Marcus, Mar 22 2016

Extensions

Wrong formula removed by Amiram Eldar, Dec 29 2020

A077066 Squarefree kernel of prime(n) + 1.

Original entry on oeis.org

3, 2, 6, 2, 6, 14, 6, 10, 6, 30, 2, 38, 42, 22, 6, 6, 30, 62, 34, 6, 74, 10, 42, 30, 14, 102, 26, 6, 110, 114, 2, 66, 138, 70, 30, 38, 158, 82, 42, 174, 30, 182, 6, 194, 66, 10, 106, 14, 114, 230, 78, 30, 22, 42, 258, 66, 30, 34, 278, 282, 142, 42, 154, 78, 314, 318, 166
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Examples

			a(25) = rad(prime(25)+1) = rad(97+1) = rad(2*7^2) = 14.
		

Crossrefs

Programs

  • Haskell
    a077066 = a007947 . a008864  -- Reinhard Zumkeller, Sep 04 2013
  • Mathematica
    a[n_] := Times @@ FactorInteger[Prime[n] + 1][[;;, 1]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)
  • PARI
    a(n)=my(f=factor(prime(n)+1)[,1]); prod(i=1,#f,f[i]) \\ Charles R Greathouse IV, Aug 21 2013
    

Formula

a(n) = A007947(A008864(n)).
a(A077067(n)) = A077067(n).

A275630 a(n) = product of distinct primes dividing prime(n)^2 - 1.

Original entry on oeis.org

3, 2, 6, 6, 30, 42, 6, 30, 66, 210, 30, 114, 210, 462, 138, 78, 870, 930, 1122, 210, 222, 390, 1722, 330, 42, 510, 1326, 318, 330, 798, 42, 4290, 2346, 4830, 1110, 570, 6162, 246, 3486, 7482, 2670, 2730, 570, 582, 462, 330, 11130, 1554, 12882, 13110, 2262, 3570, 330, 210, 258, 8646, 2010
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2016

Keywords

Crossrefs

Subsequence of A007947.

Programs

  • Mathematica
    a[n_] := Times @@ FactorInteger[Prime[n]^2 - 1][[;; , 1]]; Array[a, 60] (* Amiram Eldar, Jan 30 2021 *)
  • PARI
    a(n) = factorback(factorint(prime(n)^2-1)[, 1]); \\ Michel Marcus, Jan 30 2021

Formula

a(n) = A007947(A084920(n)). - Michel Marcus, Jan 30 2021
a(n) = A077063(n)*A077066(n)/2, for n > 1. - Amiram Eldar, Jan 30 2021

A356474 a(n) = phi(rad(prime(n)-1)), where phi = A000010 and rad = A007947.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 1, 2, 10, 6, 8, 2, 4, 12, 22, 12, 28, 8, 20, 24, 2, 24, 40, 10, 2, 4, 32, 52, 2, 6, 12, 48, 16, 44, 36, 8, 24, 2, 82, 42, 88, 8, 72, 2, 6, 20, 48, 72, 112, 36, 28, 96, 8, 4, 1, 130, 66, 8, 44, 24, 92, 72, 32, 120, 24, 78, 80, 12, 172, 56, 10, 178, 120, 60
Offset: 1

Views

Author

Jianing Song, Aug 09 2022

Keywords

Examples

			prime(8) = 19, so a(8) = phi(rad(18)) = phi(6) = 2.
		

Crossrefs

Programs

  • Mathematica
    Array[EulerPhi[Times @@ FactorInteger[Prime[#] - 1][[All, 1]]] &, 74] (* Michael De Vlieger, Aug 09 2022 *)
  • PARI
    a(n) = my(f=factor(prime(n)-1)[, 1]); prod(k=1, #f, f[k]-1) \\ following Michel Marcus's program for A173557

Formula

a(n) = Product_{primes p dividing prime(n)-1} (p-1).
a(n) = phi(A077063(n)) = A173557(prime(n)-1).

A356489 a(n) = A000265(rad(prime(n)-1)), rad = A007947.

Original entry on oeis.org

1, 1, 1, 3, 5, 3, 1, 3, 11, 7, 15, 3, 5, 21, 23, 13, 29, 15, 33, 35, 3, 39, 41, 11, 3, 5, 51, 53, 3, 7, 21, 65, 17, 69, 37, 15, 39, 3, 83, 43, 89, 15, 95, 3, 7, 33, 105, 111, 113, 57, 29, 119, 15, 5, 1, 131, 67, 15, 69, 35, 141, 73, 51, 155, 39, 79, 165, 21, 173, 87, 11, 179
Offset: 1

Views

Author

Jianing Song, Aug 09 2022

Keywords

Examples

			prime(8) = 19, so a(8) = A000265(rad(18)) = A000265(6) = 3.
prime(11) = 31, so a(11) = A000265(rad(30)) = A000265(30) = 15.
		

Crossrefs

Programs

  • Mathematica
    Array[#/2^IntegerExponent[#, 2] &[Times @@ FactorInteger[Prime[#] - 1][[All, 1]]] &, 72] (* Michael De Vlieger, Aug 09 2022 *)
  • PARI
    a(n) = factorback(setminus(factorint(prime(n)-1)[, 1]~, [2]))

Formula

a(n) = A000265(rad(prime(n)-1)) = rad(A000265(prime(n)-1)).
a(n) = Product_{odd primes p dividing prime(n)-1} p.
a(n) = A000265(A077063(n)) = rad(A057023(n)) = A204455(prime(n)-1).
Showing 1-5 of 5 results.