cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A077067 Squarefree numbers of the form prime + 1.

Original entry on oeis.org

3, 6, 14, 30, 38, 42, 62, 74, 102, 110, 114, 138, 158, 174, 182, 194, 230, 258, 278, 282, 314, 318, 354, 374, 390, 398, 402, 410, 422, 434, 458, 462, 510, 542, 570, 602, 614, 618, 642, 654, 662, 674, 678, 710, 734, 758, 762, 770, 798, 822, 830, 854, 858, 878
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Examples

			A005117(28) = 42 = 2*3*7 is a term as 42 = A000040(13) + 1 = 41+1.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]]+1,SquareFreeQ] (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    isok(n) = issquarefree(n) && isprime(n-1); \\ Michel Marcus, Mar 22 2016
    
  • PARI
    lista(nn) = forprime(p=2, nn, if (issquarefree(p+1), print1(p+1, ", "))); \\ Michel Marcus, Mar 22 2016

Formula

A077066(a(n)) = a(n).
a(n) = A049097(n)+1. - Zak Seidov, Aug 15 2006

A070195 Squarefree numbers sandwiched between a pair of twin primes.

Original entry on oeis.org

6, 30, 42, 102, 138, 282, 462, 570, 618, 642, 822, 858, 1230, 1290, 1302, 1482, 1698, 1722, 1878, 2082, 2130, 2238, 2310, 2382, 2658, 2730, 2802, 3390, 3462, 3558, 3918, 3930, 4002, 4218, 4242, 4422, 4638, 4722, 5010, 5442, 5478, 5502, 5658, 6090, 6198
Offset: 1

Views

Author

Benoit Cloitre and Labos Elemer, May 06 2002

Keywords

Comments

Numbers k such that k is squarefree, k-1 and k+1 are primes.
Intersection of A005117 and A014574. - Michel Marcus, Mar 06 2014
Also, intersection of A077064 and A077067. - Zak Seidov, Mar 20 2016
All terms are multiples of 6. - Zak Seidov, Mar 20 2016
All terms == 6 (mod 12). - Robert Israel, Mar 21 2016

Crossrefs

Cf. A005117, A014574, A077064, A077067. - Zak Seidov, Mar 20 2016

Programs

  • Maple
    select(t -> numtheory:-issqrfree(t) and isprime(t+1) and isprime(t-1),
    [seq(i, i=6..10000, 12)]); # Robert Israel, Mar 21 2016
  • Mathematica
    Select[12 * Range[0, 500] + 6, PrimeQ[#-1] && PrimeQ[#+1] && SquareFreeQ[#] &] (* Amiram Eldar, May 23 2022 *)
  • PARI
    {forstep(n=6,8000,12,if(issquarefree(n)&&isprime(n-1)&&isprime(n+1),print1(n",")));} \\ Zak Seidov, Mar 20 2016

A097946 a(n) = A008683(n)*A014197(n) where A008683 is the Moebius (or Mobius) function mu(n) and A014197 is the number of numbers m with Euler phi(m) = n.

Original entry on oeis.org

2, -3, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gerald McGarvey, Sep 04 2004

Keywords

Comments

For n < 93 and a(n) not 0, n = p - 1 where p is prime and therefore in A077064 (Squarefree numbers of form prime - 1.)

Crossrefs

Programs

A145199 Nonsquarefree numbers k such that k+1 is prime.

Original entry on oeis.org

4, 12, 16, 18, 28, 36, 40, 52, 60, 72, 88, 96, 100, 108, 112, 126, 136, 148, 150, 156, 162, 172, 180, 192, 196, 198, 228, 232, 240, 250, 256, 268, 270, 276, 280, 292, 306, 312, 316, 336, 348, 352, 372, 378, 388, 396, 400, 408, 420, 432, 448, 456, 460, 486, 490
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 04 2008

Keywords

Examples

			4 is in the sequence because it is not squarefree and 5 is prime. - _Emeric Deutsch_, Oct 12 2008
		

Crossrefs

Programs

  • Magma
    [n: n in [1..5*10^2]| not IsSquarefree(n) and IsPrime(n+1)]; // Vincenzo Librandi, Dec 24 2015
    
  • Maple
    with(numtheory): a:=proc(n) if issqrfree(n)=false and isprime(n+1)=true then n else end if end proc: seq(a(n),n=1..600); # Emeric Deutsch, Oct 12 2008
    with(numtheory): a:=proc(k) if issqrfree(ithprime(k)-1)=false then ithprime(k)-1 else end if end proc: seq(a(k),k=1..110); # Emeric Deutsch, Oct 12 2008
  • Mathematica
    Select[Prime[Range[120]]-1, !SquareFreeQ[ # ]&] (* T. D. Noe, Oct 06 2008 *)
  • PARI
    is(n)=isprime(n+1) && !issquarefree(n) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = A049092(n) - 1. - Amiram Eldar, Feb 10 2021

Extensions

Corrected and extended by T. D. Noe, Emeric Deutsch and R. J. Mathar, Oct 05 2008

A146560 Squarefree semiprimes n such that n+1 is squarefree and n+2 is prime.

Original entry on oeis.org

21, 57, 65, 69, 77, 129, 177, 209, 221, 237, 309, 329, 365, 381, 417, 437, 497, 501, 545, 597, 681, 689, 717, 785, 905, 965, 1037, 1101, 1121, 1257, 1317, 1397, 1437, 1497, 1509, 1541, 1569, 1577, 1661, 1757, 1821, 1829, 1865, 1929, 1977, 1985, 2201, 2369, 2577, 2589, 2669, 2705, 2885, 2901
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 01 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],PrimeOmega[#]==2&&SquareFreeQ[#]&&SquareFreeQ[#+1]&&PrimeQ[#+2]&] (* Harvey P. Dale, Jan 20 2020 *)

Formula

(A006881 INTERSECT A040976) INTERSECT A005117

Extensions

Definition corrected and more terms supplied by R. J. Mathar, Nov 02 2008
Showing 1-5 of 5 results.