cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A049097 Primes p such that p+1 is squarefree.

Original entry on oeis.org

2, 5, 13, 29, 37, 41, 61, 73, 101, 109, 113, 137, 157, 173, 181, 193, 229, 257, 277, 281, 313, 317, 353, 373, 389, 397, 401, 409, 421, 433, 457, 461, 509, 541, 569, 601, 613, 617, 641, 653, 661, 673, 677, 709, 733, 757, 761, 769, 797, 821, 829, 853, 857
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that core(sigma(k)) = k + 1 where core(k) is the squarefree part of k (A007913). - Benoit Cloitre, May 01 2002
This sequence is infinite and its relative density in the sequence of primes is equal to Artin's constant (A005596): Product_{p prime} (1-1/(p*(p-1))) = 0.373955... (Mirsky, 1949). - Amiram Eldar, Dec 29 2020

Examples

			29 is included since 29 + 1 = 30 = 2*3*5 is squarefree.
17 is not here because 18 is divisible by a square, 9.
		

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(900) | IsSquarefree(p+1) ]; // Vincenzo Librandi, Dec 25 2010
    
  • Maple
    N:= 10000; # to get all entries up to N
    A049097:= select(t -> isprime(t) and numtheory:-issqrfree(t+1), [2, seq(1+2*k,k=1..floor((N-1)/2))]); # Robert Israel, May 11 2014
  • Mathematica
    Select[Prime[Range[100]], SquareFreeQ[# + 1] &] (* Zak Seidov, Feb 08 2016 *)
  • PARI
    lista(nn) = forprime(p=1, nn, if (issquarefree(p+1), print1(p, ", "))); \\ Michel Marcus, Jan 08 2015

Formula

A160696(a(n)) = 1. - Reinhard Zumkeller, May 24 2009
a(n) = A077067(n)-1. - Zak Seidov, Mar 19 2016

A077068 Semiprimes of the form prime + 1.

Original entry on oeis.org

4, 6, 14, 38, 62, 74, 158, 194, 278, 314, 398, 422, 458, 542, 614, 662, 674, 734, 758, 878, 998, 1094, 1154, 1202, 1214, 1238, 1322, 1382, 1454, 1622, 1658, 1754, 1874, 1934, 1994, 2018, 2138, 2342, 2474, 2558, 2594, 2798, 2858, 2918, 3062, 3218, 3254
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Comments

a(n) = A005383(n)+1 = 2*A005382(n).
There are 672 semiprimes of form prime+1 below 100000.
a(n) = A232342(n) + A077065(n). - Reinhard Zumkeller, Dec 16 2013

Examples

			A001358(25)=74=2*37 is a term as 74=A000040(21)+1=73+1.
		

Crossrefs

Programs

Formula

A010051(A008864(n)/2) = A064911(A008864(n)) = 1. - Reinhard Zumkeller, Nov 22 2013

A077064 Squarefree numbers of form prime - 1.

Original entry on oeis.org

1, 2, 6, 10, 22, 30, 42, 46, 58, 66, 70, 78, 82, 102, 106, 130, 138, 166, 178, 190, 210, 222, 226, 238, 262, 282, 310, 330, 346, 358, 366, 382, 418, 430, 438, 442, 462, 466, 478, 498, 502, 546, 562, 570, 586, 598, 606, 618, 642, 646, 658, 682, 690, 718, 742
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Comments

This sequence is infinite and its relative density in the sequence of primes is equal to Artin's constant (A005596): Product_{p prime} (1-1/(p*(p-1))) = 0.373955... (Victorovich, 2013). - Amiram Eldar, Dec 29 2020

Examples

			A005117(44) = 70 = 2*5*7 is a term as 70 = A000040(20)-1 = 71-1.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]]-1,SquareFreeQ] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    isok(n) = issquarefree(n) && isprime(n+1); \\ Michel Marcus, Mar 22 2016
    
  • PARI
    lista(nn) = forprime(p=2, nn, if (issquarefree(p-1), print1(p-1, ", "))); \\ Michel Marcus, Mar 22 2016

Extensions

Wrong formula removed by Amiram Eldar, Dec 29 2020

A070195 Squarefree numbers sandwiched between a pair of twin primes.

Original entry on oeis.org

6, 30, 42, 102, 138, 282, 462, 570, 618, 642, 822, 858, 1230, 1290, 1302, 1482, 1698, 1722, 1878, 2082, 2130, 2238, 2310, 2382, 2658, 2730, 2802, 3390, 3462, 3558, 3918, 3930, 4002, 4218, 4242, 4422, 4638, 4722, 5010, 5442, 5478, 5502, 5658, 6090, 6198
Offset: 1

Views

Author

Benoit Cloitre and Labos Elemer, May 06 2002

Keywords

Comments

Numbers k such that k is squarefree, k-1 and k+1 are primes.
Intersection of A005117 and A014574. - Michel Marcus, Mar 06 2014
Also, intersection of A077064 and A077067. - Zak Seidov, Mar 20 2016
All terms are multiples of 6. - Zak Seidov, Mar 20 2016
All terms == 6 (mod 12). - Robert Israel, Mar 21 2016

Crossrefs

Cf. A005117, A014574, A077064, A077067. - Zak Seidov, Mar 20 2016

Programs

  • Maple
    select(t -> numtheory:-issqrfree(t) and isprime(t+1) and isprime(t-1),
    [seq(i, i=6..10000, 12)]); # Robert Israel, Mar 21 2016
  • Mathematica
    Select[12 * Range[0, 500] + 6, PrimeQ[#-1] && PrimeQ[#+1] && SquareFreeQ[#] &] (* Amiram Eldar, May 23 2022 *)
  • PARI
    {forstep(n=6,8000,12,if(issquarefree(n)&&isprime(n-1)&&isprime(n+1),print1(n",")));} \\ Zak Seidov, Mar 20 2016

A077066 Squarefree kernel of prime(n) + 1.

Original entry on oeis.org

3, 2, 6, 2, 6, 14, 6, 10, 6, 30, 2, 38, 42, 22, 6, 6, 30, 62, 34, 6, 74, 10, 42, 30, 14, 102, 26, 6, 110, 114, 2, 66, 138, 70, 30, 38, 158, 82, 42, 174, 30, 182, 6, 194, 66, 10, 106, 14, 114, 230, 78, 30, 22, 42, 258, 66, 30, 34, 278, 282, 142, 42, 154, 78, 314, 318, 166
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Examples

			a(25) = rad(prime(25)+1) = rad(97+1) = rad(2*7^2) = 14.
		

Crossrefs

Programs

  • Haskell
    a077066 = a007947 . a008864  -- Reinhard Zumkeller, Sep 04 2013
  • Mathematica
    a[n_] := Times @@ FactorInteger[Prime[n] + 1][[;;, 1]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)
  • PARI
    a(n)=my(f=factor(prime(n)+1)[,1]); prod(i=1,#f,f[i]) \\ Charles R Greathouse IV, Aug 21 2013
    

Formula

a(n) = A007947(A008864(n)).
a(A077067(n)) = A077067(n).
Showing 1-5 of 5 results.