cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077263 Number of (undirected) cycles in the n-th order antiprism graph.

Original entry on oeis.org

63, 179, 523, 1619, 5239, 17379, 58323, 196691, 664623, 2247443, 7601883, 25715603, 86993639, 294295491, 995592355, 3368062355, 11394070559, 38545861491, 130399711915, 441139061715, 1492362751831, 5048627021731, 17079382870643, 57779138376659
Offset: 3

Views

Author

Eric W. Weisstein, Nov 01 2002

Keywords

Comments

Also the number of minimal edge cuts in the n-trapezohedron graph. - Eric W. Weisstein, Dec 11 2024

Crossrefs

Cf. A077265.

Programs

  • Mathematica
    LinearRecurrence[{6, -11, 8, -3, 2, -1}, {63, 179, 523, 1619, 5239, 17379}, 22] (* Eric W. Weisstein, Dec 19 2013 *)
    Table[4 n (n - 1) + RootSum[-1 - # - 3 #^2 + #^3 &, #^n &], {n, 3, 20}] (* Eric W. Weisstein, May 05 2017 *)
    CoefficientList[Series[(63 - 199 x + 142 x^2 - 54 x^3 + 35 x^4 - 19 x^5)/((-1 + x)^3 (-1 + 3 x + x^2 + x^3)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 14 2017 *)

Formula

a(n) = 6*a(n-1) - 11*a(n-2) + 8*a(n-3) - 3*a(n-4) + 2*a(n-5) - a(n-6) for n>8. - Eric W. Weisstein, Dec 19 2013
G.f.: x^3*(63 - 199*x + 142*x^2 - 54*x^3 + 35*x^4 - 19*x^5)/((1 - x)^3*(1 - 3*x - x^2 - x^3)). - Bruno Berselli, Dec 20 2013

Extensions

a(7)-a(10) from Max Alekseyev, May 02 2010