A077265 Number of cycles in the n-th order prism graph.
14, 28, 52, 94, 170, 312, 584, 1114, 2158, 4228, 8348, 16566, 32978, 65776, 131344, 262450, 524630, 1048956, 2097572, 4194766, 8389114, 16777768, 33555032, 67109514, 134218430, 268436212, 536871724, 1073742694, 2147484578, 4294968288, 8589935648, 17179870306
Offset: 3
Links
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Dipyramidal Graph.
- Eric Weisstein's World of Mathematics, Prism Graph.
- Eric Weisstein's World of Mathematics, Web Graph.
- Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2).
Programs
-
Maple
A077265:=n->2^n+n*(n-1); seq(A077265(n), n=3..40); # Wesley Ivan Hurt, May 07 2014
-
Mathematica
Table[2^n + n*(n - 1), {n, 3, 40}] (* Wesley Ivan Hurt, May 07 2014 *) LinearRecurrence[{5,-9,7,-2},{14,28,52,94},40] (* Harvey P. Dale, Mar 17 2019 *)
Formula
a(n) = 2^n+n*(n-1). - Eric W. Weisstein, Dec 16 2013
a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4). - Colin Barker, May 06 2014
G.f.: -2*x^3*(6*x^3-19*x^2+21*x-7) / ((x-1)^3*(2*x-1)). - Colin Barker, May 06 2014
a(n) = 2*A132109(n-1). - R. J. Mathar, May 23 2016
Extensions
More terms from Eric W. Weisstein, Dec 16 2013
Comments