A077395 Lesser of two successive squarefree numbers whose product is not squarefree.
174, 422, 474, 602, 831, 843, 930, 1074, 1182, 1322, 1374, 1443, 1518, 1623, 1803, 1974, 2006, 2022, 2222, 2274, 2298, 2522, 2526, 2595, 2694, 2870, 2874, 3122, 3210, 3282, 3423, 3478, 3574, 3702, 3770, 3774, 4022, 4074, 4202, 4323, 4359, 4458, 4474
Offset: 1
Keywords
Examples
A005117(106)*A005117(107) = 174*177 = (2*3*29)*(3*59) is not squarefree, therefore 174 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A076144.
Programs
-
Maple
SF:= select(numtheory:-issqrfree,[$1..10000]): map(t -> if igcd(SF[t],SF[t+1])>1 then SF[t] else NULL fi, [$1..nops(SF)-1]); # Robert Israel, Aug 16 2015
-
Mathematica
Transpose[Select[Partition[Select[Range[5000],SquareFreeQ],2,1], !SquareFreeQ[ Times@@#]&]][[1]] (* Harvey P. Dale, Dec 14 2012 *)
-
PARI
lista(nn) = {last = 2; for (n=3, nn, if (issquarefree(n), if (! issquarefree(last*n), print1(last, ", ")); last = n;););} \\ Michel Marcus, Aug 17 2015
Formula
Conjecture: lim_{n->oo} n/a(n) > 0. - Thomas Ordowski and Robert Israel, Aug 18 2015
Comments