cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077398 First member of the Diophantine pair (m,k) that satisfies 7*(m^2+m) = k^2+k; a(n)=m.

Original entry on oeis.org

0, 2, 5, 39, 87, 629, 1394, 10032, 22224, 159890, 354197, 2548215, 5644935, 40611557, 89964770, 647236704, 1433791392, 10315175714, 22850697509, 164395574727, 364177368759, 2620014019925, 5803987202642, 41755828744080, 92499617873520, 665473245885362
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Nov 05 2002

Keywords

Comments

Equivalently, m such that 28*m*(m+1)+1 is a square. - Bruno Berselli, May 19 2014

Crossrefs

Cf. A077397, A077399, A077400. The k values are in A077401.
Cf. A053141.

Programs

  • Magma
    I:=[0,2,5,39,87]; [n le 5 select I[n] else Self(n-1)+16*Self(n-2) -16*Self(n-3)-Self(n-4)+Self(n-5): n in [1..30]]; // G. C. Greubel, Jan 18 2018
  • Maple
    f := gfun:-rectoproc({a(-2) = 2, a(-1) = 0, a(0) = 0, a(1) = 2, a(n) = 16*a(n - 2) - a(n - 4) + 7}, a(n), remember): map(f, [$ (0 .. 40)])[]; # Vladimir Pletser, Jul 24 2020
  • Mathematica
    LinearRecurrence[{1,16,-16,-1,1},{0,2,5,39,87}, 30] (* G. C. Greubel, Jan 18 2018 *)
    CoefficientList[Series[x (2+3x+2x^2)/((1-x)(1-16x^2+x^4)),{x,0,40}],x] (* Harvey P. Dale, Aug 19 2022 *)
  • PARI
    {a(n)=if(n<0,0,polcoeff(x*(2+3*x+2*x^2)/((1-x)*(1-16*x^2+x^4)) + x*O(x^n),n))};
    

Formula

G.f.: x*(2+3*x+2*x^2)/((1-x)*(1-16*x^2+x^4)).
a(n) = 16*a(n-2) - a(n-4) + 7, n >= 3. [corrected by Vladimir Pletser, Feb 29 2020]
Let b(n) be A077397 then a(n+2) = 2*a(n+1) - a(n) + b(n) with a(0)=0 a(1)=2.
a(0)=0, a(1)=2; a(n+2) = (7 + 16*a(n) + 3*sqrt(1+28*a(n)+28*a(n)^2))/2. - Herbert Kociemba, May 12 2008
a(n) = a(n-1) + 16*a(n-2) - 16*a(n-3) - a(n-4) + a(n-5). - Wesley Ivan Hurt, Jul 24 2020