A077423 Chebyshev sequence U(n,12)=S(n,24) with Diophantine property.
1, 24, 575, 13776, 330049, 7907400, 189447551, 4538833824, 108742564225, 2605282707576, 62418042417599, 1495427735314800, 35827847605137601, 858372914787987624, 20565122107306565375, 492704557660569581376
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..723
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (24,-1).
Crossrefs
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077912 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), this sequence (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.
Programs
-
GAP
a:=[1,24];; for n in [3..20] do a[n]:=24*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 1/(1-24*x+x^2) )); // G. C. Greubel, Dec 22 2019 -
Maple
seq( simplify(ChebyshevU(n, 12)), n=0..20); # G. C. Greubel, Dec 22 2019
-
Mathematica
Table[GegenbauerC[n, 1, 12], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *) ChebyshevU[Range[21] -1, 12] (* G. C. Greubel, Dec 22 2019 *)
-
PARI
vector(21, n, polchebyshev(n-1, 2, 12) ) \\ G. C. Greubel, Dec 22 2019
-
Sage
[lucas_number1(n,24,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
Formula
a(n) = 24*a(n-1) - a(n-2), a(-1) = 0, a(0) = 1.
a(n) = S(n, 24) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the 2nd kind. See A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap= 12+sqrt(143) and am = 12-sqrt(143).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*24^(n-2*k).
a(n) = sqrt((A077424(n+1)^2 - 1)/143).
G.f.: 1/(1-24*x+x^2). - Philippe Deléham, Nov 18 2008
a(n) = Sum_{k=0..n} A101950(n,k)*23^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/11*(11 + sqrt(143)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/24*(11 + sqrt(143)). - Peter Bala, Dec 23 2012
Comments