cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077424 Chebyshev sequence T(n,12) with Diophantine property.

Original entry on oeis.org

1, 12, 287, 6876, 164737, 3946812, 94558751, 2265463212, 54276558337, 1300371936876, 31154649926687, 746411226303612, 17882714781360001, 428438743526336412, 10264647129850713887, 245923092372890796876
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(143+286k)-1 and a(143+286k)+1 are consecutive odd powerful numbers. See A076445. - T. D. Noe, May 04 2006
Except for the first term, positive values of x (or y) satisfying x^2 - 24xy + y^2 + 143 = 0. - Colin Barker, Feb 19 2014

Crossrefs

Cf. A090732.

Programs

  • Magma
    I:=[1,12]; [n le 2 select I[n] else 24*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2014
  • Mathematica
    CoefficientList[Series[(1 - 12 x)/(1 - 24 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 21 2014 *)
    LinearRecurrence[{24,-1},{1,12},20] (* Harvey P. Dale, Jun 15 2024 *)
  • PARI
    Vec((1-12*x)/(1-24*x+x^2) + O(x^100)) \\ Colin Barker, Feb 19 2014
    
  • Sage
    [lucas_number2(n,24,1)/2 for n in range(20)] # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n+1)^2 - 143*b(n)^2 = 1 for n>=0, with the companion sequence b(n)=A077423(n).
a(n) = 24*a(n-1) - a(n-2) for n>0, a(-1) := 12, a(0)=1.
a(n) = T(n, 12)= (S(n, 24)-S(n-2, 24))/2 = S(n, 24)-11*S(n-1, 24) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(n, 24)=A077423(n).
a(n) = (ap^n + am^n)/2, with ap := 12+sqrt(143) and am := 12-sqrt(143).
a(n) = sum( ((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*12)^(n-2*k), k=0..floor(n/2) ) for n>=1.
a(n+1) = sqrt(1 + 143*A077423(n)^2) for n>=0.
G.f.: (1-12*x)/(1-24*x+x^2).