A077424 Chebyshev sequence T(n,12) with Diophantine property.
1, 12, 287, 6876, 164737, 3946812, 94558751, 2265463212, 54276558337, 1300371936876, 31154649926687, 746411226303612, 17882714781360001, 428438743526336412, 10264647129850713887, 245923092372890796876
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (24,-1).
Crossrefs
Cf. A090732.
Programs
-
Magma
I:=[1,12]; [n le 2 select I[n] else 24*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2014
-
Mathematica
CoefficientList[Series[(1 - 12 x)/(1 - 24 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 21 2014 *) LinearRecurrence[{24,-1},{1,12},20] (* Harvey P. Dale, Jun 15 2024 *)
-
PARI
Vec((1-12*x)/(1-24*x+x^2) + O(x^100)) \\ Colin Barker, Feb 19 2014
-
Sage
[lucas_number2(n,24,1)/2 for n in range(20)] # Zerinvary Lajos, Jun 26 2008
Formula
a(n+1)^2 - 143*b(n)^2 = 1 for n>=0, with the companion sequence b(n)=A077423(n).
a(n) = 24*a(n-1) - a(n-2) for n>0, a(-1) := 12, a(0)=1.
a(n) = T(n, 12)= (S(n, 24)-S(n-2, 24))/2 = S(n, 24)-11*S(n-1, 24) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(n, 24)=A077423(n).
a(n) = (ap^n + am^n)/2, with ap := 12+sqrt(143) and am := 12-sqrt(143).
a(n) = sum( ((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*12)^(n-2*k), k=0..floor(n/2) ) for n>=1.
a(n+1) = sqrt(1 + 143*A077423(n)^2) for n>=0.
G.f.: (1-12*x)/(1-24*x+x^2).
Comments